
Co-evolution as the Key for Live Programming
Remo Lemma and Michele Lanza

REVEAL @ Faculty of Informatics – University of Lugano, Switzerland

Abstract—The promise of live programming is to shorten or
even break the infamous edit-compile-run cycle, providing live
feedback on a program’s envisioned behavior while it is being
written. Several live programming languages and environments
exist, from venerable examples (Smalltalk, LISP) to more recent
efforts like Ruby. In most cases either the IDE comes as an
afterthought, after the language is designed, or novel languages
are made to fit into existing IDEs. We pursue a middle ground
by co-evolving both a language and its IDE: we are developing
a novel live programming language, called Moon, from scratch,
and are concurrently building its IDE. We illustrate our efforts
so far and discuss our overall vision.

I. Introduction

When developing software systems, modeling and other
activities heavily influence the final outcome, but primarily
programming moves abstract thoughts to concrete artifacts.
Most mainstream programming languages (and environments)
are based on the traditional edit-compile-run cycle. This
approach allows developers to recognize clear boundaries
between the different phases to focus on one activity at a
time: first write the code, then compile it, and finally observe
and test the system at runtime. Although this approach is
easy to understand and use, it is sub-optimal. While writing
code, developers have problems understanding the impact
of modifications and the frequent interruptions, due to (re-
)compilation and program startup, have a negative effect on
the productivity of developers.

Live programming systems provide immediate and live
feedback on a program’s runtime behavior while the code
is being changed. This cuts waiting times and ensures that
developers are aware of the changes made to the running system.
In contrast to live programming precursors like Smalltalk
and LISP, modern live coding is often based on the use of
audiovisual artifacts, allowing one to smoothly work on both
sides: For example it is possible to draw shapes to generate
code, and it is possible to write code to generate shapes.

Adapting existing languages and/or environments to the live
programming philosophy is non-trivial, especially when they do
not natively support introspection and reflection. The creation of
new solutions is often approached by developing languages and
environments separately. A common approach (e.g., [1]) is to
develop a new language and afterwards exploit an existing IDE
(e.g., Eclipse). This does not come without technical constraints,
and concessions have to be made to make language and IDE
co-exist. We believe that existing IDEs are not suitable for live
programming, as they have not been designed for this.

We present our ideas about a novel live programming
language —named Moon—, and its development environment,
which we are currently building in parallel.

II. Moon: Inception & Rationale
In designing Moon we take a bottom-up minimalistic

approach, starting from few essential elements. We started
by implementing the primitive numeric types and the basic
mathematical operations. We then added the possibility to create
user-defined functions. This allows us to create behavioral
entities which can refer to each other and execute simple
mathematical operations. Concurrently we started developing
a dedicated IDE with native support for live feedback. We
developed two prototypes, depicted in Figure 1:
(A) The first one is directly integrated in Pharo1, an open

source Smalltalk implementation which we used to create
the first version of the compiler for Moon.

(B) The second prototype is a web-based IDE disconnected
from the compiler, written in JavaScript. It uses HTML5
for the front-end.

We envision an environment which immediately reacts and
provides visual feedback (we also plan for aural feedback) on
the individual entities, on the state of the system and on its
evolution. In the following we discuss our current ideas.

Entities Visualization. When visualizing the state of a
component (e.g., an instance of a class, the result of a program)
what matters is its nature. Live programming is perfectly
suitable for audiovisual domains, yet we believe that it is
also applicable in more abstract settings. We want to base our
environment (and language) on the concept of Representation.
Each entity is associated with its concretization in a human-
perceptible format (i.e., a Representation). Basic representations
will be shipped with the system, and users will be able to
compose them in order to create new representations for their
custom entities. This allows us to abstract away from the
concept of audiovisual feedback, and empower users with
the ability to choose appropriate ways to represent a certain
concept, mixing, if necessary, different types of feedback.

State Visualization. Having live feedback on the overall
state of a system is valuable, as it allows developers to spot
early errors, if they see the impact of their actions not only on
the current entity, but also on the overall system.

We implemented (consult Figure 1) a first prototype of
state visualization. In Pharo we underlined parts of code
which do not compile (and the compiler is invoked at every
carriage return). In the web-based environment we use colors
to distinguish the state of the different parts of the system
(e.g., green for correctly compiled, yellow for modified, red for
erroneous), as we did not implement live syntax highlighting
yet and compilation has to be triggered manually.

1http://www.pharo-project.org/

978-1-4673-6265-8/13 c© 2013 IEEE LIVE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

9



A

B

Fig. 1: Moon code written in the two versions of the development environment.

The current approach can be greatly improved, by providing
automatic compilation at every change in the abstract syntax
tree, and by using more sophisticated visualizations to show
the state of the system. We advocate the use of an overlay in
which the negative impact of the last change is shown. For
example if the last change triggers an exception in another
function the overlay will show these dependencies, which can
also be conceived as a visual debugging technique.

Evolution Visualization. While working on a system,
especially in a collaborative settings, we can exploit the concept
of live feedback to keep always an updated visualization of the
overall evolution of the system. We are still at the inception
of this idea, but we believe it is valuable to be explored for
future research. As a first try we will tackle this problem by
creation an evolving map [2] of the software at hand.

III. Conclusions & Future Thoughts

Our goal is to co-evolve a live programming language
and its environment. Novel IDEs (e.g., Gaucho [3]) have
been leveraged in the context of new metaphors to facilitate
program comprehension and modern languages (e.g., Scala2)
are equipped with newer, higher-level, abstractions which ease
programming. However, when it comes to live programming,
we doubt that the union of these two distinct worlds can
produce a satisfactory outcome. The development of a custom
solution which fully integrates the philosophy of live coding is
essential. Although ad-hoc environments for specific languages
have been created in the past (e.g., [4]), co-evolving them gives
the advantage of having the ability to test in an incremental
way how users react to the whole (language plus environment).

2http://www.scala-lang.org

We plan to integrate the ideas discussed above in Moon and
in its development environment. Because we plan to integrate
the Representation based approach, we also aim at using it to
test its usability on the language itself (i.e., by representing
the entities composing the language, which are in turn code
entities, thus, representable). However, there are a number of
issues that have to be tackled and that we will investigate:
• How can we integrate the possibility to write parallel

and/or multi-threaded source code and what is the best
way to give live feedback on its execution (and on possible
bugs and/or errors)?

• What is the level of liveness that the system should have?
In a Smalltalk-like philosophy the whole system should
be always live and also shipped as-is. However this is
not always the best choice (e.g., for performance-sensitive
applications). On the other side, deploying full-blown,
compiled, applications would be detrimental for those
cases where having a live system could be beneficial.

References
[1] S. McDirmid, “Living it up with a live programming language,” in

Proceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems and applications, 2007, pp. 623–638.

[2] A. Kuhn, D. Erni, P. Loretan, and O. Nierstrasz, “Software cartography:
thematic software visualization with consistent layout,” Journal of Software
Maintenance, vol. 22, no. 3, pp. 191–210, 2010.

[3] F. Olivero, M. Lanza, and M. Lungu, “Gaucho: From integrated develop-
ment environments to direct manipulation environments,” in Proceedings
of FlexiTools 2010 (1st International Workshop on Flexible Modeling
Tools), 2010.

[4] R. B. Smith, J. Maloney, and D. Ungar, “The Self-4.0 user interface:
manifesting a system-wide vision of concreteness, uniformity, and
flexibility,” in OOPSLA ’95: Proceedings of the tenth annual conference
on Object-oriented programming systems, languages, and applications.
ACM Request Permissions, Oct. 1995.

10


