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Abstract—Logic programming languages are today used to 
build applications accessing large database systems. This raises 
the possibility of building live development environments for 
them. Of particular interest is how specific language features 
such as level of abstraction, transactions, etc. affect the design of 
such an environment. In this paper, we explore this question for a 
specific logic language, Datalog, contrast traditional and live 
approaches for its tooling and discuss issues that arise. 

Index Terms—Logic programming, Datalog, Live 
programming environment, Intentionality. 

I. LIVE PROGRAMMING 
Can live programming environments be used with logic 

programming languages? To answer this question, we must 
first define what we mean by a live programming environment. 
For the purposes of this paper, an Interactive Development 
Environment (IDE) is live to that extent that the distance, both 
temporal and intentional, between making a change to a 
program and seeing its effect is small. 

Temporal distance measures the time lag between making 
the change and seeing the results. It can be caused by delays 
due to compilation, execution, network latency, database 
access, etc. Intentional distance is also important. A software 
developer, when making a change to a program is thinking at a 
certain level of abstraction, using a specific vocabulary of 
concepts and with a particular intent. For the intentional 
distance to be small, the response given by the development 
environment should be at the same level of abstraction, use the 
same vocabulary and provide information useful in determining 
whether the intent has been satisfied. For example, imagine a 
situation in which a programmer has changed the name of a 
variable in a declaration as the first step in globally renaming it. 
Here, the programmer is thinking at the global level of 
abstraction, substituting a name that better reflects the 
program's requirements, and which thereby improves the 
program's readability. A live IDE that informs the programmer 
of all of the temporarily invalid uses of the old variable name 
has established a significant intentional distance between the 
programmer's goal and the feedback given. More intentional 
alternatives include a high-level global-rename refactoring 
operation or a delay in providing feedback until the macro edit 
has been completed. 

We would like to better understand how the features of a 
programming language effect the temporal and intentional 
distance with which it can be handled by a live IDEs. In 
particular, the research challenge for designers of such 
environments is to tune the feedback provided, both in its 
content and in its frequency, so that at each moment in time, 
developers are provided actionable information tailored to the 

specific goals that they are trying to achieve. It is the purpose 
of this document to explore factors that affect such feedback 
for logic programming languages, specifically Datalog. 

II. LOGIC PROGRAMMING 
The goal of logic programming languages is the direct 

expression of program requirements/specifications in program 
code thereby eliminating the need to provide implementation 
details. This approach is sometimes also called declarative 
programming. The most prominent example of a logic 
programming language is Prolog [1], which has now been in 
use for forty years. To make logic programming viable in 
Prolog, however, certain non-declarative constructs, such as 
cut, were added enabling the programmer to control the 
interpreter's search of its goal tree. Instead of Prolog, we 
consider the more purely declarative logic programming 
language Datalog, which invented by the database community 
as an alternative to SQL. 

Datalog's power arises from its ability to efficiently deal 
with large amounts of data while avoiding many of the low-
level implementation details found in other languages. The 
basic unit of data representation in a Datalog program is the 
predicate, which is a named, typed collection of facts of fixed 
arity. Predicates may describe entities (representatives of 
objects of interest in the world the program is modeling) 
usually with a corresponding reference scheme, properties of 
entities, and relationships among entities. For example, an 
employment database may have employee entities, each 
referenced by an employee identification number, the birthdate 
property, and the supervisory relationships among employees. 

There are two categories of predicates in Datalog—EDBs 
and IDBs. An EDB predicate, which is stored in the 
extensional database, comprises a set of asserted facts, usually 
obtained from an external data source, such as an input file. An 
IDB is stored in the intensional database and consists of a set 
of facts derived using rules, which are made up of a head and a 
body. If the body evaluates to true with respect to the current 
set of known facts, then a new IDB fact is derived as specified 
by the head. Using the terminology of relational databases and 
SQL, such rules can be used to specify views resulting from 
table selections, joins and projections. Further, because rules 
can be recursive, more powerful programs can be written than 
in standard SQL. In addition to logical operators, such as 
conjunction and negation, Datalog rules may also make use of 
arithmetic and aggregation operators, such as TOTAL and 
MAX. Additionally, Datalog programs may contain 
constraints, which are purely declarative statements about 
database state. For example, a constraint may indicate that a 
particular binary predicate is strictly functional in nature. 

978-1-4673-6265-8/13 c© 2013 IEEE LIVE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

19



Because Datalog programs control large, possibly 
distributed, databases their evaluation is broken into atomic 
units called transactions, each of which has two stages. The 
initial stage is used for processing queries and for on-demand 
evaluation of EDB assertions. During the final stage, IDB 
predicates are updated by continually interpreting all active 
program rules until a fixed point is reached; that is, until no 
further changes occur. If at any time a constraint is violated, the 
current transaction aborts and the contents of the database 
revert to its state before the transaction began. When a non-
aborting transaction completes, it is said to commit. 

A typical Datalog program might begin by inputting a data 
file into a database to which rules are applied to derive new 
facts that can be later queried. The program itself might include 
a schema in the form of a set of predicate declarations and 
accompanying constraints. Rules are specified to compute the 
required results. Result queries may also be prepared for later 
presentation via output files or direct display to users. 

III. FEEDBACK 
Given the above description of Datalog and Datalog 

programming, questions arise as to what feedback a 
development environment can give to the programmer and 
when to give it. For example, what effect does the transactional 
nature of Datalog execution have on information delivery? If 
the program intends a group of changes to be effected by a 
single transaction, then providing feedback with small temporal 
latency may not be of much use to the programmer because of 
its large intentional distance. Table I. illustrates some of the 
kinds of feedback that might be provided by a live logic 
programming environment, when it would be appropriate to 
provide them and what actions the environment might take to 
help the developer deal with the situation. 

IV. OBSERVATIONS 
We note several differences between the kinds of feedback 

provided in traditional and a logic programming languages and 
how they might affect a live development environment. First, 
of course, is the commit process. The nature of logic programs 
is such that immediate feedback of computed results when 
making one of a set of interdependent editing change might 
increase intentional distance. It is only when a set of related 
changes has been completed that the computed results reflect 
the programmer's complete intentions. 

Logic programs normally comprise a large set of small (one 
to four line) rule specifications. Each rule has its own argu-
ments and local variables, thus acting more like a function than 
a statement in an imperative programming language. Interest-
ing semantic errors arise due to the interdependencies among 
the numerous, loosely coupled rules. Consequently, seeing the-
se dependencies is quite helpful to understanding where a prob-
lem might arise. Dependency visualizations can be either static 
or dynamic. An example of a static dependency between two 
rules is when an IDB predicate computed in the head of one 
rule is dependent on one or more predicates in its body. The 
body  predicates may, in turn, be  dependent on predicates in its 
body. The body predicates may, in turn, be dependent on predi-
cates computed in other rules until, eventually, EDB predicates 

TABLE I.  FEEDBACK TO LOGIC PROGRAMMERS 

Activity Situation Action 

Rule specification Use of undeclared 
predicate 

Generate declaration 

Rule specification Wrong number / 
type of arguments 

Highlight matching predicate 
declarations; (semi) automatic 
correction 

Rule specification Duplicate rule 
head 

Highlight matching rules 

Rule specification Unsafe rule Highlight matching rules 

Rule specification Missing base case 
for recursive rule 

Highlight matching rules 

Predicate / rule 
declaration 
selection 

Program reading 
Highlight referenced and/or 
dependent predicate 
declarations 

Entity declaration Missing reference 
scheme 

Generate default reference 
scheme 

Property predicate 
declaration 

Missing entity 
reference 

Offer choices 

Predicate / 
constraint 
declaration 

Unknown 
predicate reference 

Offer choices 

Constraint 
specification 

Wrong number / 
type of arguments 

Highlight matching predicate 
declarations; (semi) automatic 
correction 

EDB fact assertion Undeclared 
predicate 

Offer choices; generate 
predicate declaration 

EDB fact assertion Wrong number / 
type of arguments 

Offer choices 

EDB fact assertion Constraint 
violation 

Display constraint and 
violating values; allow 
correction 

EDB modification Database 
maintenance 

Display altered views 

Query Routine use Display results 

Query 

Unknown 
predicate; wrong 
number / type of 
arguments 

Offer alternatives 

Transaction 
execution Commit Highlighted display of new 

IDB facts 
Transaction 
submittal Delayed execution Performance improvement 

suggestions 
Transaction 
execution Commit Display of provenance 

Transaction 
execution 

Constraint 
violation 

Rollback; display of 
constraint; display of 
violating data 

 
are reached. Moreover, because of recursion, the dependencies 
need not be treelike and can form a general directed graph. 

Dynamic dependencies are even more interesting. The 
computation of a specific predicate may depend on thousands 
of other computations. Because of the bottom-up, fixed-point 
nature of Datalog's evaluation algorithm and its recursive rules, 
the dependency graph may be cyclic. Fortunately, such cycles 
can, in most cases, be stratified (broken into tiers that are 
interdependent in only an acyclic way). This suggests the 
possibility of visualizations that abstract a dynamic dependency 
graph in a way to make it more comprehensible. 

The dynamic dependency graph enables the computation of 
various kinds of provenance. In general, provenance provides a 
historical record of activities contributing to the ultimate state 
of a database. Specifically, we can talk about where, how, why 
and why not provenance for database records [2, 3]. Where 
provenance tells us about the input sources of designated 
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output values. In many cases, an output value produced by a 
query is ultimately copied from some input value, and where 
provenance provides this connection. For example, in 
debugging, where provenance enables us to focus on a 
particular test case that lead to anomalous output. Note that 
because Datalog has set-based semantics (in contrast with 
SQL's multi-set semantics), there may be multiple input values 
that might have given rise to the output value. 

Why provenance provides a more extensive but less precise 
description of the production of an output fact. In particular, it 
comprises all sets of input facts that might have contributed to 
its production. Whereas where provenance is concerned with 
values, why provenance is concerned with sets of facts. An 
example use of why provenance is if we wish to understand 
which input fact influence an output fact in a what-if scenario. 

More extensive still is how provenance, which tells us not 
only which sets of input facts contribute to the production of an 
output fact but also which database operations (i.e. rules) were 
used in that production. Hence how provenance enables 
detailed analysis of the operational steps in a computation. An 
example of the use of how provenance would be to provide a 
justification for a final result. 

Most interesting of all is why-not provenance [4]. Here the 
goal is to help the programmer determine why a given output 
fact was not produced. Obviously, there may be many reasons, 
and why-not provenance is produced using abductive 
heuristics. Nevertheless, such suggestions can facilitate 
program understanding and result justification. 

V. A TRADITIONAL IDE FOR LOGIC PROGRAMMING 
The benefit of a live programming environment is a 

reduction of the distance from ideation to realization. Such a 
distance include both time and intent aspects. Having 
instantaneous response aids the former but at the potential cost 

of increasing the latter. This increase takes the form of spurious 
messages and outputs that do not reflect a program state whose 
meaning is important to the programmer. We claim that a 
useful live environment should focus on reducing the time 
distance only for meaningful states. To see how to do this, we 
contrast traditional and exploratory IDEs for Datalog logic 
programming. 

A traditional IDE for Datalog we have experimented with is 
shown in Figure 1. The user interface is organized around 
distinct displays that are customized to support development 
according to three perspectives: data/spreadsheeting, source 
code, and diagramming. Each display provides one or more 
graphical components that target its given perspective plus a 
number of components that are common across all of the 
displays. These common components include the output 
console, the schema browser, and the project selector. 

The data display provides a grid that can be used for tasks 
that require interaction with data. Such tasks include displaying 
the contents of predicates, executing ad hoc queries, submitting 
transactions and even modeling an application domain starting 
from sample data. By default, the IDE opens to this display. 
The Datalog code display provides a text editor that can be 
used for tasks that involve the manipulation of large amounts of 
code. Such tasks include creating and editing programs. The 
schema display provides graphical tools that support 
navigating, modeling, and editing the schema of a project or 
database. The graphical schema language is ORM [5], and a 
reverse-engineering tool exists to map Datalog code to ORM. 

Note that when using the traditional IDE's code view a 
programmer is required to explicitly switch to the spreadsheet 
display in order to view the data. Although not obvious in 
Figure 1, he/she is also required to explicitly press buttons in 
order to install rules into the IDB or alter facts in the EDB. 

Figure 1: A Traditional IDE for Datalog 
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VI. A LIVE IDE FOR LOGIC PROGRAMMING 
A live IDE for logic programming needs to provide both 

less and more than a traditional IDE. On the one hand, the live 
IDE must avoid giving distracting responses until a 
transactional unit is available for execution. In the traditional 
IDE, a transaction unit was explicitly signified by the 
developer. For a livelier feel, it would help to abstract over the 
idea of transactions; that is, transactions might be 
optimistically committed, using dependency analysis to 
determine when such a unit is available and has been changed. 
If this later subsequently leads to an invalid state, then the 
transaction is aborted and the database rolled back. 

A live interface for logic programming might also provide 
extensive visualizations of static and dynamic dependency 
information. Such visualizations would be continuously 
updated as computations are performed. For example, you 
could imagine a live environment where on the left you see 
your logic and on the right you have panels showing predicate 
data. When you edit your logic on the left, any IDB facts 
instantly update on the right. In addition, you could edit data on 
the right, and any other predicate panels whose values are 
derived from that data could update in a live fashion. 

If live updating of (derived) data is supported based on 
changed logic or changed data, the visualization opportunities 
increase. For example: 
• If you display data in a grid, values that change could 

temporarily light up in green if they went up, or red if 
they went down. 

• Graphed data could morph from the old graph to the new 
in an animated way. 

• Graphs could be edited by pulling values up and down, 
thereby updating the underlying data. 

VII. DISCUSSION 
Brooks has famously distinguished essential and accidental 

complexity in the context of program development [6]. Acci-
dental complexity arises when solving problems is complicated 
by the tools used to solve them, whereas essential complexity 
is inherent to the problem itself. It should be the goal of any 
live programming environment to reduce accidental complexity 
so that the developer can concentrate on essential issues. One 
way to do so is to make as direct a connection as possible be-
tween a proposed solution expressed in code and the results 
produced by its execution. Directness is enhanced by reducing 
the temporally and intentional distance between the two. 

Of course, all is not smooth sailing. As indicated above, the 
inherent role of transactions in logic programming 
compromises the direct connection between program edits and 
changes to results. Because optimistic commits are inherently 
heuristic in nature and may have to be rolled back, the 
programmer will always have to cope with some latency. 

Another issue has to do with scale. Databases are usually 
required for situations where there is lots of data involved. 
Hence, seeing the effects of a code change will require 
abstracting results via advanced visualizations. Moreover, the 
long chains of inferences typical of logic programs mean that 
provenance will be difficult to present, whether textually of 
graphically. Similarly, it may be difficult to make sense of 

constraint violations because, in general, they can act as 
invariants over the entire state of the database. 

A final issue to be concerned with in live logic 
programming is concurrency. Database systems often support 
multiple users concurrently viewing and updating database 
content. If a live development environment is used to update or 
debug a program accessing a concurrent database, the 
environment should help manage database volatility. At one 
extreme, it could create a single-user snapshot of the database. 
On the other, it might provide monitoring capabilities to warn 
of potentially faulty situations and recording features so that 
they can be reproduced. 

VIII. CONCLUSION 
Liveness has been part of software development tooling 

since the time that debugging tools began to allow users to set 
breakpoints, watch variables, and single-step execution. 
Multiple, live views of programs and their data have also been 
with us for at least thirty years. Nevertheless, dead 
environments, in which the temporal and intentional distance 
between program code and results are large, still prevail in 
many areas. Fortunately, advances in hardware speed, graphical 
displays and compiler architectures have enabled many of these 
early visions to finally be put to practical use. 

We began this paper by asking whether live programming 
environments can be used with logic languages. Because such 
languages are beginning to be used to develop large-scale 
applications, they have become attractive candidates for live 
development environments. However, we determined that 
certain language features, such as transactions, have to be 
considered because they affect the temporal and intentional 
distances of relevance to the programmer. We can now 
generalize the original question to ask what does liveliness 
mean for different language paradigms? That is, how do we 
design live environments tailored to specific language features? 
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