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Abstract—In a live programming environment, the state of the 
running program is available during the editing process. An ideal 
live programming system should be able to harness the live 
program to offer improved abilities for code creation and 
manipulation. We introduce Circa, a language and platform 
designed to address this need. We argue in favor of a dataflow-
based model of computation, and we show how this format 
enables useful methods of code inspection and manipulation. We 
present a framework based on the backpropogation algorithm 
that allows the user to manipulate their program by expressing a 
desire against the program’s result. We discuss how these code 
editing abilities can combine to produce a highly effective 
environment. 

Index Terms—Live coding, dataflow programming. 

I. INTRODUCTION 
In a live programming environment, the user creates and 

modifies code while their program is running. One of the 
defining advantages of this setup is that the live program can be 
used as an aid during the code editing process. We can annotate 
the source code view with runtime information, such as the 
most recent result for a certain expression. We can also use the 
running program as a sort of magnifying glass, which shows us 
which sections of the code are relevant for the current state. 
This is a fundamental feature of Smalltalk-based environments 
[1][2], where the user can click on a graphical object, and 
navigate menus to see that object’s definition. In an ideal live 
coding environment, code and runtime are intertwined, and the 
user can seamlessly jump between the two. Following these 
principles, we attempt to build a system from scratch that can 
best support a live editing workflow. 

A language’s design and implementation can often make 
this kind of runtime introspection difficult. In some cases, the 
association between runtime data and source code is not 
preserved during the compilation process. Even if the 
association is present, it may be difficult to communicate it to 
the user in a clear way. For example, if we would like to ask 
the system, “how was this particular value computed?” If the 
program uses a series of side-effecting steps that manipulate 
shared mutable state, then it can be difficult to say exactly 
which steps were responsible for that value. And, even if the 
language is pure, the use of too many higher-order abstractions 
might cause the answer to be practically inscrutable. 

To that end, we need a programming model where code is 
highly introspectable and understandable. We choose a 
dataflow-based programming model, where a program is 
represented as a directed graph of terms. Each term has a list of 
inputs, and a function that specifies how to compute the output 
value. A function may be defined as a nested graph of more 
terms, or it may be a simple atomic operation. A function may 
also have an external effect, as long as its result value is purely 
computed from its inputs. 

With a dataflow model, we innately have a greater ability to 
introspect on our program. For a given expression, we can 
always trace upwards to see where its inputs came from. We 
can show the user how a value was computed by showing the 
relevant function and input values. We can also freely 
reevaluate a section of code. A dataflow diagram also lends 
itself well to visualization, as demonstrated by the success of 
visual code editors such as PureData [3] and Max [4].  

A dataflow-based code model has some drawbacks. A 
major problem is of expression: it’s difficult to architect a large 
program as just a series of simple pure expressions. A quote by 
Alan Perlis is relevant here: “Purely applicative languages are 
poorly applicable.” An area for future research is expanding on 
this language to support more expressiveness, without losing 
the properties that allow for deep runtime introspection. 

In the remainder of this paper, we will present compelling 
methods of code editing that are made possible by a dataflow 
model. 

II. FLOW-BASED INTROSPECTION 
We present a hypothetical scenario where the user is 

writing code to draw a simple scene (see figures 1 and 2). Our 
goal is to enable an interaction model where the user can click 
on the drawing in order to inspect and modify their code. 

The process starts with a mouse click on the rendered 
scene. The first thing the runtime does is to determine which 
call to draw_sprite() is associated with that mouse position. We 
can determine this by reexecuting the code in a special pure-
only mode, where all side-effecting functions are skipped. 
During this special evaluation, the runtime observes all of the 
calls to draw_sprite(), and it checks the position of each sprite 
against the mouse position. 
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Figure 1. An example program 

 

 
 

Figure 2. The rendered result of our example program. 

 
The runtime now has a copy of the program’s intermediate 

state at the time when the relevant draw_sprite() call was made. 
We refer to this intermediate state as the "stack". It contains a 
list of stack frames, each containing intermediate values and 
links to the relevant code. The language’s implementation 
allows stacks to be manipulated as first class values, including 
support for efficient duplication. 

Using the stack, and taking advantage of our flow-based 
code model, we can present the user with a filtered view of the 
code.  This filtered view only displays terms that were directly 
involved in the input values to draw_sprite().  From this view, 
the user has an easier time understanding the computation that 
went into this sprite’s position. (see figure 3).   

III. HYBRID TEXTUAL/VISUAL EDITING 
Our code examples have thus far been displayed in a textual 

format, but having a highly-introspectable format allows us to 
present the same code as a graphical diagram (see figure 4). We 
don't consider there to be a difference between "textual" 
programming languages and "visual" ones, only a difference 
between textual and visual presentations. The corollary is that 
some languages are strongly suited for a certain kind of 
presentation.  For various subjective reasons, we choose to use 
text as the primary storage format for Circa code. 

After looking at the filtered code view, the user will likely 
want to make a code change directly to this view. This is 
possible because our stack contains links to the compiled 
source code data. The implementation stores code in a format 

 
Figure 3. Code view is filtered around one call to draw_sprite() 

 

 
Figure 4. A visual graph can be rendered from the above code. 

 
that allows for easy implementation. Additionally, we 
implemented a whitespace-preserving decompiler which is able 
to reproduce the source text for a given code block. The user 
can save a modified code block back to well-formatted source 
code text. 

IV. FEEDBACK ON FLOW-BASED CODE 
The highly-introspectable flow-based model allows us to 

perform some even more clever methods of code manipulation. 
In the "feedback" scheme, the user expresses a desire against 
the result of a computation. A desire might be, "I want this 
result to be 5", or "I just want this result to be slightly smaller". 
The solver also receives various constraints, such as a 
restriction that only certain terms may be affected. Additionally 
the solver may receive hints, including the program's stack at 
the time when the desire was created. Taking all this input, the 
solver attempts to produce a code modification that would 
satisfy the requirements. The solver may answer that there are 
multiple solutions, and further specification is needed. The 
solver may also fail to find any solution. 

This solving algorithm is inspired by the backpropagation 
algorithm [5]. An initial desire is expressed against the result of 
a computation.  Then, we perform these two steps for each term 
involved in the computation: 

 
1) Accumulation. All the pending desires for a given term are 

summed together. 
2) Propagation/Resolution. We find an appropriate handler 

function, using multiple dispatch against the function and 
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the desire type. The handler examines the incoming desire. 
It may propagate, by sending a desire signal to one or 
more of the term's inputs. It may also resolve, creating a 
proposed code modification that would satisfy the 
incoming desire. 

 
This process is repeated until all pending desires are resolved, 
or the algorithm fails. 

Any step of the process has the potential to fail. The 
accumulation step may find it impossible to sum certain 
desires. The propagation/resolution step may not know how to 
respond to an incoming desire. Additionally, the entire process 
may produce a bad solution, even if each term was resolved 
successfully. Our solver is a general-purpose optimization 
algorithm, which is guaranteed to fail against some problems. 
We'll discuss the ramifications of this below. 

Here are some examples of a “desire” signal. The system 
can be extended to support many desire types. 

 
    RelativeValue: The result should be a value that is X 

greater than before.  
    NotBool: The boolean result should be the opposite of 

what it was before. 
    DiscourageEffect: This desire is aimed at a side-effecting 

call, and indicates that the circumstances that lead to this effect 
should be avoided. 

 
The accumulation step must combine incoming desires into 

one signal. If there are two or more, we must combine them in 
a way that's appropriate to the desire type. For example, if we 
have two RelativeValue desires, then combining them is to just 
perform an arithmetic sum of their values. Some combinations 
are impossible, such as RelativeValue with DiscourageEffect, 
and these would cause the solver to report failure. 

Once the incoming desires are combined, a handler must 
use the summed desire. The handler is determined by 
dispatching against the desire type and the function. For some 
functions, the handler is straightforward. Consider the value() 
function, which is used in Circa to hold a literal value. The 
feedback handler for this function is relatively easy: 

 
If the desire is an RelativeValue or NotBool, 

produce a code modification that would change this 
value to the requested value.  

For other desires, report failure. 
 
The value() function never propagates a desire, as it has no 

inputs. Next, consider the add() function, which adds two 
numbers. The feedback handler for add() is: 

 
If the desire is RelativeValue, check the constraints 

to see which inputs can receive feedback. If only one 
input can, then propagate an equal desire of 
RelativeValue to that input. If both inputs are able to 
receive feedback, then the situation is ambiguous. We 
can try to split the difference and send RelativeValue 
feedback to both inputs. If neither input can receive 

feedback, or there is a different desire type, report 
failure. 

     
Some desire types are resolved independent of the actual 

function. For the DiscourageEffect desire, the strategy would 
be: locate the if-block that contains this term, and propagate a 
desire of NotBool against the conditional value for that if-
block. 

Finally, some functions may have a strategy that is 
independent of the desire type. Consider the cond() function 
which takes an boolean input, and returns one value if the 
boolean is true, and another if the value is false. This function's 
feedback handler would look at the value of the boolean at the 
time of the feedback signal. If this value is known, then the 
feedback handler can propagate the desire signal towards the 
input that was used at the time.  

As mentioned in the add() example, there is often more than 
one way for the solver to satisfy a desire. Because of this, it's 
usually necessary to provide constraints to the solver. Most 
often, the solver needs to be constrained to only allow 
modifications to certain terms. The user can specify which 
terms to target using the code view interface. Alternatively, the 
source code itself might contain implicit or explicit hints, 
indicating that certain terms should or should not be targeted 
with feedback.  

V. HANDLING FEEDBACK FAILURES 
We have mentioned several ways in which our solver might 

fail, or not know what to do.  This is not surprising, as our 
solver resembles a general-purpose equation solver, which is 
hard to do well and impossible to solve completely. With its 
numerous flaws, one might wonder how this system can be 
useful at all. 

One observation is that the problems that the feedback 
solver will face tend to be relatively simple, mathematically 
speaking. Consider the code behind a typical real-world 
graphical user interface. When the program computes the 
position of each element, the actual math is most likely nothing 
more than a series of addition, multiplication and conditional 
operations. Our feedback-based solver has a good chance of 
success against this. 

If the feedback solver does fail, we can try to recover. Our 
environment is innately live and has a high degree of user 
interaction. We can return to the user, present an annotated 
code view showing the solver’s progress, and request more 
clarification or hints.  

We might also be able to help the solver by statically 
annotating the code with hints.  For example, our language 
could include a way to declare that B is monotonically 
increasing based on A. If the solver can't understand exactly 
how to convert a desire based on B to one based on A, it might 
be able to proceed using the hint. This issue could be 
considered a matter of coding style. Experienced users could 
develop a set of best practices for writing code that is amenable 
to feedback.  
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VI. FEEDBACK IN ACTION 
With this feedback-based solver in place, there are a few 

ways that we can exploit it. Returning to our above example, 
where our user is drawing a scene and they want to manipulate 
the code for a given sprite. As before, the process starts with 
the user clicking a sprite. The runtime would present the 
relevant code path.  Next, the user manually selects which 
terms they want to manipulate. The feedback solver uses this 
selection as a constraint. Now, the user may click and drag the 
sprite. Internally, the runtime initiates a feedback operation for 
every mouse drag motion. It sends a RelativeValue desire 
(containing the distance of the mouse motion) against the 
position input to draw_sprite(). If successful, the sprite will 
move around the screen, exactly as the user would expect for a 
drag gesture. In this way, we have a form of programming by 
direct manipulation [6]. 

 

 
Figure 5. Click-and-drag using feedback to modify a selected term. 

 

By introducing new syntax, we can further streamline the 
feedback-based editing process. Consider a situation where the 
user is writing new code, and they would like to tweak a certain 
value once their code is running. The user can indicate that a 
value is uncertain with syntax such as a “?” symbol. When the 
new code is submitted, the system will present the user with a 
feedback-based editing mode. The feedback operation is 
automatically constrained to only manipulate the expressions 
marked with “?”. Coding can then be a hybrid process, where 
the initial structure of the code is written in as text, and then the 
“blanks” are filled in using the interactive environment. 

VII. APPLICATIONS TO OTHER DOMAINS 
The strategies that we have described are fairly generic, and 

would work in a variety of other domains, including non-live 
environments. A dataflow-based approach works especially 
well when the input and output values are easy for the user to 

 
 
 

understand and interact with. Our drawing example is a good 
fit for this approach, because directly manipulating the “output 
value” (the rendered scene) is an intuitive form of interaction. 
An example of a poor choice for this approach is a compression 
algorithm, where the output value (compressed data) is not easy 
to work with. However, even with the compression example, 
there is potential to decompose the algorithm’s intermediate 
steps into a form that is amenable to introspection. 

VIII. CONCLUSION 
Live programming has unique needs for language and 

runtime. By using a dataflow-based programming model, the 
system is able to more easily introspect on a running program. 
This introspection enables compelling new methods of code 
editing. We have shown how a runtime can show a trace view, 
displaying only the expressions relevant to one particular piece 
of data. We have presented a code manipulation strategy based 
on the backpropagation algorithm, where code is modified by 
expressing a desire against a computation result, and shown 
how it may be practically utilized. 

Our  plans for future work are to continue to refine these 
ideas for code manipulation, and continue exploring new ideas. 
One major focus for future work is expanding our language to 
support more powerful abstractions, without losing our code 
manipulation abilities. The backpropagation-based solver has 
demonstrated potential, but still has some unresolved issues 
before it can be used as a dependable tool. We will also 
continue improving the implementation, with the aim of 
releasing a complete environment for live programming. 
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