Live Feedback on Behavioral Changes

Gustavo Soares*, Emerson Murphy-Hillf, Rohit Gheyi*
*Department of Computing Systems, Federal University of Campina Grande, Brazil
{gsoares, rohit} @dsc.ufcg.edu.br
TDepartment of Computer Science, North Carolina State University, USA
emerson@csc.ncsu.edu

Abstract—The costs to find and fix bugs grows over time, to
the point where fixing a bug after release may cost as much as
100 times more than before release. To help programmers find
bugs as soon as they are introduced, we sketch a plugin for an
integrated development environment that provides live feedback
about behavioral changes to Java programs by continuously
generating tests, running the tests on the current and previous
versions of the program, and comparing the results. Such a
tool would allow programmers to better understand how their
changes affect the behavior of their programs. As a proof of
concept, we developed a prototype that found a bug that remained
undetected by pair programmers working on JHotDraw in a
previous study. Had the programmers performed this change
with our plugin, they would have been notified about the bug as
soon as they introduced it.

Index Terms—Live programming, refactoring, testing

I. MOTIVATION

Change is inevitable in software because programmers must
implement new features and fix bugs. At the same time,
they must also perform refactorings to make these changes
easier. However, such changes may introduce bugs that persist
uncaught for a long time. As Boehm and Basili [1] observed,
the costs to find and fix bugs grows over the time, often
becoming 100 times more expensive after delivery. Testing
plays an important role in finding bugs, and to make testing
more frequent, Saff and Ernst [2] proposed an approach that
continuously runs tests in the background as the programmer
changes the code. They have shown that this approach helps to
reduce the number of bugs that programmers introduce while
editing. In the tool’s evaluation, though, several participants
mentioned the fact that, in order for this tool to be effective,
the programmer must have already written good tests.

In practice, programmers often do not have sufficient test
cases to catch every bug. For example, programmers acciden-
tally introduced a bug while refactoring exception-handling
code in the JHotDraw application; this bug was not caught
by the programmers nor JHotDraw’s test suite [3]. In that
study, two programmers working as a pair sought to extract
exception-handling code from several classes into a new class.
To each of these classes, they added a new field responsible
for handling exceptions and replaced the original exception-
handling code with an invocation of a method on the new
field. Although the programmers believed that this change
preserved the behavior of their program (and their test suite
confirmed that belief), they forgot an important step: be-
cause several of the original classes were Serializable,

978-1-4673-6265-8/13 © 2013 IEEE

23

the new field’s class must also be Serializable. The
reason that this is a bug is because when an object gets
serialized and one of its fields is not Serializable, a
NotSerializableException is thrown. However, the
bug persisted unnoticed by the pair programmers, the tests, and
the researchers until several months later when we retrospec-
tively analyzed their changes using our SafeRefactor tool [3].

This example got us thinking — could the original program-
mers have used SafeRefactor to notice this bug and fix it
immediately? The answer is “yes” in theory, but practically
it would be cumbersome. To understand why, one has to
understand how SafeRefactor works: it works by generating
tests for the code before and after a change, runs the tests
on both versions, and then compares the results. If the results
are the same, SafeRefactor improves programmer’s confidence
that this change is a refactoring, but if the results are different,
SafeRefactor reports it as a behavioral change. The reason
why this process is cumbersome is manifold: a programmer
must remember to run it; must record and explicitly choose the
program versions to compare; and then must wait a significant
amount of time for SafeRefactor to generate tests, compile
them against both versions of the code, and then run the tests
and return the results. These activities would likely distract
programmers from the task at hand.

II. SKETCH

In this section, we sketch the idea of a plugin for the
programmer’s integrated development environment (IDE) that
would help programmers distinguish between refactorings and
behavioral changes in a live, non-distracting way. The idea
is simple: to use SafeRefactor to continuously compare the
current version of a program against prior versions, then
inform the programmer which changes were refactorings and
which were not, and thus help the programmer confirm or
disconfirm her beliefs about her changes.

Our proposed approach is much like continuous testing in
that both approaches run tests automatically in the background
of a programmer’s IDE. However, there are two main differ-
ences between continuous testing and our proposed approach.
First, instead of using the program’s existing test suite, we aim
to automatically generate tests. Second, the goals of the two
approaches are different. With continuous testing, the goal is to
compare the program’s behavior against the behavior specified
in the test suite. In contrast, with our approach, the goal is to

LIVE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

compare the program’s current behavior against the program’s
behavior in the past.

- | Freure. sava N

PuBLIC cLrss Fieure IMPLEMENTS SsmiaLizaBLE {

PUBLIC Dsveet cLone()¢
-.r'v;v{
N Writes wrirgDsvecr (TH1S;

catcud10€xcermion €) {
SvéTem .cqR. PRINTLN (Ciass Nor Bom "+ €);

(a) The Figure class before being refactored.

PUBLIC cLass Fieure MPLEMENTS SemaLizaeLe {

PRIVATE ExcsemonHmoLen. HANDLER = New ExceprionHanpLer);

(b) The plugin automatically detects a behavioral change, highlighting the code
that was changed, and shows a warning icon.

PUBLIC ciass fieure IMPLEMENTS SsmaLizasLe {

~ PRIVATE ExcornonimoLen HaNDLER = NEW ExceprionHanpLee):
AFtER. ADDING THIS FIELD, THE LLONE METHOD THROWS
A NOTSGRIRLIZ RBLEEXCEPTION . THE FOLLOWIN 6 TEST PASsED
BEFORE YOUR CHANGE., BUT WD LON GER FANES AFTER THG CHANGE
FUBLIC voID TEsT() {
Fleore var0 = NEW FlsurE();

Obdeet varq = VARD.CLoNEC);
AssertTrRuE (Vard f= NuLL);

(c) When passing the cursor over the warning icon, the plugin shows the
behavioral change found and the test case that reveals the bug.

Fig. 1: Mockup of the user interface of our plugin.

To illustrate how our approach would work, let
us return to (a simplified version of) the JHotDraw
example. Suppose that the pair of programmers has
our plugin installed in their IDE, and are working
on the code in Figure 1(a). They begin by taking the
System.err.println('‘Class Not Found’’+ e),
put it into a new class ExceptionHandler, then add a
field that contains an ExceptionHandler to the Figure
class (see Figure 1(b)). After adding the new field, our
plugin identifies that the behavior of the code was changed,
highlights the code changes between the versions, and shows
a warning (Figure 1(c)). When the programmer moves
the cursor over the warning icon, the plugin describes the
behavioral change, and shows the test case that revealed it.
The pair programmers then discusses the problem, makes
ExceptionHandler implement Serializable, and the
bug is removed a few seconds after it was introduced.

III. CHALLENGES

This simple idea is more complicated than it appears. In
this section we describe challenges that we identified while
developing a prototype.

Defining a version. Our approach requires two discrete ver-
sions of a program to compare, yet programming is fairly
continuous. At the finest level of granularity, we could consider
a new version being created each time the programmer types
a character, similar to how IDEs automatically give feedback
about compilation errors. However, it does not seem worth-
while to run tests on an uncompilable program. Another way
to define versions is that a new version is created on every
changes if and only if the program compiles after the change.
However, even this may be too aggressive — if a programmer
types inside of a string literal, every key press would generate
a new version. While our goal is to provide rapid feedback, it
may be that feedback that is too frequent may be annoying to
the programmer.

Which versions to compare. Sometimes programmers may
want to compare the behavior of the program not against
the immediately previous version, but against an earlier one.
For instance, in a previous study [4], we observed how
programmers performed the Extract Method refactoring. One
of the participants first cut the statements to be extracted (step
1), pasted them after their original method (step 2), surrounded
these statements with a new method name and brackets (step
3), added parameters to the new method declaration (step 4),
and finally inserted the new method invocation at the extracted
statements’ original place (step 5). In this scenario, comparing
the behavior between each consecutive version would mark
every change as a non-refactoring, yet all 5 changes, taken
as a whole, constitute a complete refactoring. Thus, it would
be helpful for the plugin to check for behavioral changes not
only against the immediately previous version, but also against
other previous ones. The question then becomes, how far
back in the program’s history should the plugin look to make
comparisons? If the plugin looks too far back in the history, it
may report behavioral changes that are inconsequential to the
programmer. If the plugin does not look back far enough, it
may incorrectly identify a refactoring as a behavioral change,
as in the example of the 5-step change above.

One approach is to demand that the programmer explicitly
states the earliest version to compare with. This could be done
by pressing a “start” button before the programmer make a
coherent set of changes. However, our previous research [4]
suggests that sometimes programmers do not realize that they
are going to apply a refactoring, missing the opportunity to use
our plugin. An alternative approach is to compare the behavior
of the current version against all the previous ones, up until
an implicit “start” point, such as when a file was opened or
saved.

How to present behavioral changes over multiple versions.
Explaining to the programmer that her previous change was
a refactoring is easy; explaining that some combination of

24

previous changes contains some refactorings is not. Suppose a
programmer is performing the Extract Method refactoring as
described in the previous subsection. In the final step, when
she adds the method invocation to complete the refactoring, we
would like the plugin to be able to say that although this last
change was not a refactoring, the transformation as a whole
was. We aim at designing a user interface that allows the user
to easily visualize the refactoring and non-refactoring changes
that were applied during a programming session, yet how to
design such a user interface is not obvious.

How to generate tests. Since the effectiveness of our approach
on detecting behavioral changes depends on the quality of the
generated tests, it is important to have a good test generator.
Researchers have been proposing a number of approaches
for test generation. We used the random test generator Ran-
doop [5] to generate tests for SafeRefactor, which has helped
us to detect a number of behavioral changes in Java pro-
grams [3], [6]. Other options include Seeker, a test generator
that combines static and dynamic analysis for generating test
suites [7]. While Seeker tends to generate tests with higher
code coverage than Randoop, Randoop tends to have better
performance, which is important for our live programming
application. We plan to evaluate several test generators to find
an acceptable balance between performance and test quality.

There are at least two approaches that we can use to
optimize test generation for our plugin. First, we do not have
to test the entire program for every change. If a method is
changed, at least the plugin should test that method. In other
cases, the plugin may need to tests unchanged parts of the
program; for instance, a change to a field may have an impact
on the methods that use this field. A way to deal with this
problem is to use change impact analysis to calculate which
methods are impacted by a code change. For instance, we
could use the approach used by Wloka et al. [8] to assess the
impact of a change so that we could focus on testing only the
methods impacted by the change. Second, we do not have to
generate completely new tests for each version: any previously
generated test that can compile against both versions under
test can be reused to expose behavioral changes. However,
the challenge is that we need to determine which tests are
compatible with both versions.

Definition of behavior preservation. It is not straightforward
to generate tests for all types of changes. Consider a change to
a method in an abstract class; how should the plugin generate
tests for it? We cannot generate tests based on only this class
because the abstract class cannot be instantiated. If the class
has subclasses, we can instantiate a subclass and test the
method as it was inherited. If the class has no subclasses, then
we can generate a mocked subclass and test that in the same
way. However, this latter case introduces a wider problem —
if an abstract class has no concrete subclasses, what does
it mean for a change to be behavior preserving? Since the
class is abstract, it cannot be instantiated, so any change is
technically behavior preserving with respect to the program
under analysis. However, the class may be instantiated in some

25

third-party code. This is essentially an issue of assuming a
closed world versus assuming an open world. Our intuition
is that assuming an open world is more beneficial for the
programmer, and that our plugin should be implemented using
this assumption. This is because, in the abstract class example,
the programmer likely wants to know whether a change to an
abstract class is behavior preserving with respect to all possible
subclasses. In essence, the plugin should present information
the same way for abstract classes as it does with concrete ones.

To take another example, suppose in the middle of an
Extract Method refactoring, a programmer adds code to write
to a log file. What should the plugin tell the programmer
now? Since writing to a log is unlikely to be a bug, marking
the entire set of changes as non-behavior preserving seems
unhelpful. We think it would be more helpful to say that the
change as a whole is a refactoring with respect to what the
method returns, but is not a refactoring with respect to what is
written to the log. We refer to these as two different “domains”
of behavior preservation, and believe that our plugin should
specify what domain a behavior change belongs to because this
will help the programmer make a more informed judgement
about whether the change modified behavior in any way
meaningful to her. How the plugin can communicate this to
the programmer is an open question.

IV. IMPLEMENTATION

In this section, we describe an in-progress implementation
of our plugin for the Eclipse IDE. Our goal was to evaluate the
feasibility of our idea with respect to performance. Can our
approach work fast enough to provide feedback during coding
activities? Our proof of concept compares only two versions:
a base version, meaning the version of the program the last
time the file was saved, and the current version, the most
recent compilable version of the program. Next, we explain
the process our plugin uses for detecting behavioral changes.

First, we identify the method that is being edited by
the programmer, its parameters and the constructors of its
declaring class. We also include its callers and subclasses
that inherit from it. We use these elements to generate tests
using Randoop. Similar to SafeRefactor, we only include
the methods with the same signature between versions to
guarantee that the tests compile before and after the change.

Randoop randomly generates tests for a specified period
of time — the longer the time, the more tests it generates.
Since we focus on only a small part of the total program, and
because the plugin is intended to be used during live coding,
we ask Randoop to generate as many tests as it can in one
second. To reduce overhead, we invoke Randoop on a running,
separate Java Virtual Machine (JVM) with the binary classes
of the base version pre-loaded. We use Java Remote Method
Invocation' (RMI) to communicate between the plugin and the
separate JVM. To reduce the time to test each version, we do
not generate the JUnit test files. Instead, Randoop generates
the test cases in memory and simultaneously executes those

Uhttp://docs.oracle.com/javase/tutorial/rmi/index.html

tests against the base version of the program. Then, we send
those test cases over RMI to the JVM running the current
version of the program. That JVM then invokes the tests cases
using reflection.? Finally, we compare the results of the two
test executions; if they are different, we report a behavioral
change, otherwise, a refactoring.

To test the performance of our prototype, we used a Mac-
Book Pro Core i5 with 4 GB of ram to perform the JHotDraw
refactoring described in Section I. Our plugin generated 26
test cases, 14 of which exposed the behavioral change that
programmers accidentally introduced. It detected this bug
about 2 seconds after performing the change. We feel this is
fast enough to provide live feedback on behavioral changes.
Even so, further optimizations are possible to reduce this time.

V. RELATED WORK

Rachatasumrit and Kim [9] investigated the adequacy of
regression tests for validating refactorings in real-world pro-
grams. They found that refactorings’ correctness was not well-
tested: only 22% of code impacted by refactorings was covered
by existing test suites. Also, a survey performed at Microsoft
found that a lack of tests may discourage programmers from
performing refactorings [10]. Our plugin is designed to im-
prove programmers’ confidence when performing refactorings.

To help programmers perform refactorings, IDEs provide
refactoring tools, which automatically check preconditions to
assure behavioral preservation, and if the preconditions are
satisfied, they perform the desired transformation. However,
it is difficult for tool builders to identify all preconditions
needed for each refactoring. Even state-of-the-art academic
and industrial Java refactoring tools may introduce bugs [6].
Also, Ge et al. [4] show that programmers sometimes fail
to recognize that they are going to refactor before manually
starting the refactoring, leading to an underuse of refactoring
tools. They propose BeneFactor, a plugin that detects when the
programmer is manually refactoring the code, and reminds her
that there are tools available to complete the change. Never-
theless, current refactoring tools can only check a pre-defined
set of refactorings; because of the difficulty in defining such
refactorings, BeneFactor has only 3 refactorings implemented.
By providing live feedback on behavioral changes, we aim at
automatically validating any kind of refactoring without the
user needing to explicitly invoke the plugin.

Developers can also use static analysis tools, such as Find-
Bugs [11], to help them find bugs early in the development
process. In fact, we could have detected the bug introduced
in the JHotDraw example by using Findbugs. The tool would
show a warning in the new field of the Figure class. Similar
to refactoring tools, though, its difficult to specify all kinds of
bugs that may occur. We propose a complementary approach
that uses dynamic analysis to help programmers find bugs.

Jin et al. [12] propose an approach called BERT for auto-
mated regression testing. Given two versions of a program,
they generate tests for the changed parts of the program, run

Zhttp://docs.oracle.com/javase/tutorial/reflect/index.html

the tests on both versions, and compare the results. However,
programmers can use BERT only when the change does
not alter method signatures to guarantee the generated tests
will compile on both versions of the program. In contrast,
we identify the common methods between both versions to
guarantee the compatibility of the tests.

Lahiri et al. [13] propose a tool for equivalence checking
and displaying behavioral differences. The tool translates the
program into an intermediate language, and, for each pair of
methods (before and after the change), checks equivalence by
using a program verifier. Symdiff took up to 180 seconds to
evaluate programs with less than 570 lines of code. We seek to
provide a plugin that provides feedback almost immediately.

VI. CONCLUSIONS

In this paper, we investigate how to design a plugin for the
programmer’s IDE that provides live feedback on behavioral
changes by generating and running tests on multiple program
versions. Although, at first, we thought that it could be
easily implemented based on previous works on continu-
ous testing [2] and generating tests for checking behavioral
changes [3], during its development, new challenges emerged.
We described our current implementation, which provides evi-
dence that it is feasible to provide live feedback on behavioral
changes based on test generation and execution. We think that
this plugin will change the programming experience, but only
long term use will help us find out how.

ACKNOWLEDGMENT

Thanks to Brittany Johnson, Xi Ge, Jim Shepherd, Yoonki
Song, and Michael Bazik. This work was partially supported
by the National Institute of Science and Technology for
Software Engineering (INES).

REFERENCES

[1] B. Boehm and V. R. Basili, “Software defect reduction top 10 list,”
Computer, vol. 34, no. 1, pp. 135-137, 2001.

[2] D. Saff and M. D. Ernst, “An experimental evaluation of continuous
testing during development,” in ISSTA, 2004, pp. 76-85.

[3] G. Soares, R. Gheyi, D. Serey, and T. Massoni, “Making program
refactoring safer,” IEEE Software, vol. 27, pp. 52-57, 2010.

[4] X. Ge, Q. L. DuBose, and E. Murphy-Hill, “Reconciling manual and
automatic refactoring,” in ICSE, 2012, pp. 211-221.

[5] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball, “Feedback-directed random
test generation,” in /CSE, 2007, pp. 75-84.

[6] G. Soares, R. Gheyi, and T. Massoni, “Automated behavioral testing of
refactoring engines,” IEEE TSE, vol. 39, no. 2, pp. 147-162, 2013.

[7]1 S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and Z. Su,
“Synthesizing method sequences for high-coverage testing,” in OOPSLA,
2011, pp. 189-206.

[8] J. Wloka, E. Hoest, and B. Ryder, “Tool support for change-centric test
development,” IEEE Software, vol. 27, no. 3, pp. 66 71, 2010.

[9]1 N. Rachatasumrit and M. Kim, “An empirical investigation into the

impact of refactoring on regression testing,” in ICSM, 2012, pp. 357

-366.

M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactoring

challenges and benefits,” in FSE, 2012, pp. 50:1-50:11.

D. Hovemeyer and W. Pugh, “Finding bugs is easy,” in OOPSLA, 2004,

pp. 132-136.

W. Jin, A. Orso, and T. Xie, “Automated behavioral regression testing,”

in ICST, 2010, pp. 137-146.

S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebélo, “Symdiff:

a language-agnostic semantic diff tool for imperative programs,” in

CAV’12, 2012, pp. 712-717.

[10]
(11]
[12]

[13]

26

