Interactive Code Execution Profiling

Alexandre Bergel
PLEIAD Lab, Department of Computer Science (DCC), University of Chile

http://bergel.eu

1. INTRODUCTION

Programming environments have significantly improved
over the last decade. Whereas abilities to efficiently edit
and manage code source are now considered the minimum
a modern IDE should provide, understanding and tracing
program execution are still largely under-considered.

Code execution profilers are tools to extract information
from a program execution and have a wide range of applica-
tions (e.g., identifying execution hotspots', identifying test
coverage?, extracting program invariant3).

This paper sketches a demonstration of Spy [1], the code
execution profiling framework we have designed for the Pharo
programming language. Spy offers efficient means to easily
record particular information about a program execution. A
profile may then be graphically rendered using the Roassal
visualization engine?. Such a visual representation of the
program execution may exhibit relevant patterns indicating
opportunities for improvement.

A video summarizing this demonstration is available online:
http://bit.ly/LiveWorkshop.

2. DEMO OUTLINE

The duration of the Spy framework demonstration is ap-
proximately 15 minutes and consists in incrementally building
a code profiler to obtain a test coverage tool. The demonstra-
tion is divided into two parts: enriching a minimal profiler
and analyzing test coverage.

Part 1 - Creating a Minimal Profiler. The demonstra-
tion begins by creating a minimal code execution profiler.
The profiler simply keeps track for each method of the pro-
filed application the amount of times each method is executed.
The profiler code is:

"http://www.ej-technologies.com
2http://emma.sourceforge.net
3http://groups.csail.mit.edu/pag/daikon
‘http://bit.ly/roassal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

MyProfilerMethod>>beforeRun: name with: args in: receiver
nbOfExecutions := nbOfExecutions + 1.

The method beforeRun:with:in: is similar to a before
advice using the Aspect-Oriented Programming terminology.
In our case, a counter is associated to each method of the
base application. At each execution of a method, this counter
is incremented.

A profile obtained from Spy is structured in terms of
classes and methods (Figure 1): each large box is a class;
edges represent inheritance: a superclass is located above its
subclasses; inner boxes are methods.

Ooooog|oo ooo Oogo|0oooo|fon 0 @o [==]=] ooo
g5 |Egas] ™ ” EEJF e e FEE"]
ooo (m] oo o

oo
oo
Ooooo Ooooo
nunn |:||:n:n:| oo
oooo oo

Figure 1: Default profile visualization

The default visualization of a profile uses a white small
square to represent a method. Figure 1 is produced by the
method visualizeOn::

MyProfiler>>visualizeOn: view
view nodes: self allClasses forEach: [:each |
view nodes: each methods.
view gridLayout].
view edgesFrom: #superclass.
view treelayout

We refine the visualization to reflect the method counters
and the structure of the application. We set all the test
classes and test methods with a green border. We also relate
the size of a method with the number of times the method
is executed. The new definition of visualizeOn: is (bold
indicates added code):

MyProfiler>>visualizeOn: view
view shape rectangle
if: #isTestClass borderColor: Color green.
view nodes: self allClasses forEach: [:each |
view shape rectangle
if: [:m | m selector beginsWith: 'test']
borderColor: Color green;
size: [:m | (m nbOfExecutions + 1) log * 8] .
view nodes: each methods.
view gridLayout].
view edgesFrom: #superclass.
view treelayout

http://bergel.eu
http://bit.ly/LiveWorkshop
http://www.ej-technologies.com
http://emma.sourceforge.net
http://groups.csail.mit.edu/pag/daikon
http://bit.ly/roassal

oo O°/oo|eo o DDE%] U@DDDDD UEDE[],[[];DU DDD oo
o
DDDDD ooo D o

%DD“ i ey

- DDDD

Figure 2: Augmented visualization

This profiler is used as a testbed for explorative experi-
mentations. Figure 2 shows methods that are executed many
times during the test execution.

Part 2 - Test Coverage. Test coverage is about relating
test suites with the application base code. It is an essential
tool to understand how well the base code is covered by
the tests. Instead of relying on a textual list of covered
and uncovered methods as most test coverage tools do (e.g.,
Emmaf®, NCoverG), we will use a visual support to indicate
the coverage.

The profiler presented in the previous phase is incremen-
tally augmented with new information extracting capabilities,
such as dependencies between methods:

MyProfilerMethod>>beforeRun: name with: args in: receiver
v
nbOfExecutions := nbOfExecutions + 1.
v := self getSpyOf: self callingMethod.
self addIncomingCalls: v.
v addOutgoingCalls: self

Methods are then positioned using a tree layout and colored
to indicate non-covered methods. Methods that not executed
are red. The visualization is then defined as:

MyProfiler>>visualizeOn: view
view nodes: self allClasses forEach: [:each |
view nodes: each methods.
view edges: each methods from: #yourself toAll:

#outgoingCalls.
view treelLayout.].

An example of a profile is given in Figure 3.

(S =] R EEEEE]] “F DDD;D (SR F0
a a o L O oo
U oo u . uﬂ
A \;“;‘ DDDDDDDDDE
il
o 0

Figure 3: Augmented visualization

Visual representation may let some patterns emerge. Con-
sider Figure 4, obtained from a large class.

The figure shows the importance of some methods in the
call graph. It also indicates a large proportion of non covered
methods. Contextual menus and tooltip (not shown in the
figures) details which methods are visualized.

5http ://emma.sourceforge.net/coverage_sample_a/
index.html
Shttp://ncover.sourceforge.net/sample-output/
NCover-report.html

EEEEC | SECCIEEEEEEEEEET] [EECEEE EEEEEEEET] o Dnea[Jooamnn
o 0 O | o O
o O s}

Figure 4: Augmented visualization

Technologies used. This demonstration is realized in Pharo,
using the Spy and Roassal framework. Although these plat-
forms will be used in the demo, the amount of actual code and
specific techniques is minimal, meaning that no requirement
is necessary from the audience.

3. VISION BEHIND SPY

Relating source code to an actual program execution is an
essential step which remains tremendously difficult. Retro-
spectively looking at the evolution of program environments,
it is striking to see that code execution profilers and debug-
gers have little evolved.

Spy is about easily scripting profilers and debuggers for
punctual needs. Scripts may use Roassal to visually render
a profile. Thanks to the Roassal domain specific language,
interactive visualizations may be defined in an incremental
fashion.

This demonstration present the steps we have taken when
we designed Hapao’, a full-fledged test coverage tool.

4. REFERENCES

[1] A. Bergel, F. Banados, R. Robbes, D. Réthlisberger,
Spy: A flexible code profiling framework, in: Smalltalks
2010, 2010.

"http://objectprofile.com/#/pages/products/hapao/
overview.html

http://emma.sourceforge.net/coverage_sample_a/index.html
http://emma.sourceforge.net/coverage_sample_a/index.html
http://ncover.sourceforge.net/sample-output/NCover-report.html
http://ncover.sourceforge.net/sample-output/NCover-report.html
http://objectprofile.com/#/pages/products/hapao/overview.html
http://objectprofile.com/#/pages/products/hapao/overview.html

	Introduction
	Demo Outline
	Vision behind Spy
	References

