
Live Logic Programming
Spencer Rugaber, Zef Hemel, Kurt Stirewalt

LogicBlox, Inc.
Atlanta, GA USA

{spencer.rugaber, zef.hemel, kurt.stirewalt}@logicblox.com

Abstract—Logic programming languages are today used to
build applications accessing large database systems. This raises
the possibility of building live development environments for
them. Of particular interest is how specific language features
such as level of abstraction, transactions, etc. affect the design of
such an environment. In this paper, we explore this question for a
specific logic language, Datalog, contrast traditional and live
approaches for its tooling and discuss issues that arise.

Index Terms—Logic programming, Datalog, Live
programming environment, Intentionality.

I. LIVE PROGRAMMING
Can live programming environments be used with logic

programming languages? To answer this question, we must
first define what we mean by a live programming environment.
For the purposes of this paper, an Interactive Development
Environment (IDE) is live to that extent that the distance, both
temporal and intentional, between making a change to a
program and seeing its effect is small.

Temporal distance measures the time lag between making
the change and seeing the results. It can be caused by delays
due to compilation, execution, network latency, database
access, etc. Intentional distance is also important. A software
developer, when making a change to a program is thinking at a
certain level of abstraction, using a specific vocabulary of
concepts and with a particular intent. For the intentional
distance to be small, the response given by the development
environment should be at the same level of abstraction, use the
same vocabulary and provide information useful in determining
whether the intent has been satisfied. For example, imagine a
situation in which a programmer has changed the name of a
variable in a declaration as the first step in globally renaming it.
Here, the programmer is thinking at the global level of
abstraction, substituting a name that better reflects the
program's requirements, and which thereby improves the
program's readability. A live IDE that informs the programmer
of all of the temporarily invalid uses of the old variable name
has established a significant intentional distance between the
programmer's goal and the feedback given. More intentional
alternatives include a high-level global-rename refactoring
operation or a delay in providing feedback until the macro edit
has been completed.

We would like to better understand how the features of a
programming language effect the temporal and intentional
distance with which it can be handled by a live IDEs. In
particular, the research challenge for designers of such
environments is to tune the feedback provided, both in its
content and in its frequency, so that at each moment in time,
developers are provided actionable information tailored to the

specific goals that they are trying to achieve. It is the purpose
of this document to explore factors that affect such feedback
for logic programming languages, specifically Datalog.

II. LOGIC PROGRAMMING
The goal of logic programming languages is the direct

expression of program requirements/specifications in program
code thereby eliminating the need to provide implementation
details. This approach is sometimes also called declarative
programming. The most prominent example of a logic
programming language is Prolog [1], which has now been in
use for forty years. To make logic programming viable in
Prolog, however, certain non-declarative constructs, such as
cut, were added enabling the programmer to control the
interpreter's search of its goal tree. Instead of Prolog, we
consider the more purely declarative logic programming
language Datalog, which invented by the database community
as an alternative to SQL.

Datalog's power arises from its ability to efficiently deal
with large amounts of data while avoiding many of the low-
level implementation details found in other languages. The
basic unit of data representation in a Datalog program is the
predicate, which is a named, typed collection of facts of fixed
arity. Predicates may describe entities (representatives of
objects of interest in the world the program is modeling)
usually with a corresponding reference scheme, properties of
entities, and relationships among entities. For example, an
employment database may have employee entities, each
referenced by an employee identification number, the birthdate
property, and the supervisory relationships among employees.

There are two categories of predicates in Datalog—EDBs
and IDBs. An EDB predicate, which is stored in the
extensional database, comprises a set of asserted facts, usually
obtained from an external data source, such as an input file. An
IDB is stored in the intensional database and consists of a set
of facts derived using rules, which are made up of a head and a
body. If the body evaluates to true with respect to the current
set of known facts, then a new IDB fact is derived as specified
by the head. Using the terminology of relational databases and
SQL, such rules can be used to specify views resulting from
table selections, joins and projections. Further, because rules
can be recursive, more powerful programs can be written than
in standard SQL. In addition to logical operators, such as
conjunction and negation, Datalog rules may also make use of
arithmetic and aggregation operators, such as TOTAL and
MAX. Additionally, Datalog programs may contain
constraints, which are purely declarative statements about
database state. For example, a constraint may indicate that a
particular binary predicate is strictly functional in nature.

978-1-4673-6265-8/13 c© 2013 IEEE LIVE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

19

Because Datalog programs control large, possibly
distributed, databases their evaluation is broken into atomic
units called transactions, each of which has two stages. The
initial stage is used for processing queries and for on-demand
evaluation of EDB assertions. During the final stage, IDB
predicates are updated by continually interpreting all active
program rules until a fixed point is reached; that is, until no
further changes occur. If at any time a constraint is violated, the
current transaction aborts and the contents of the database
revert to its state before the transaction began. When a non-
aborting transaction completes, it is said to commit.

A typical Datalog program might begin by inputting a data
file into a database to which rules are applied to derive new
facts that can be later queried. The program itself might include
a schema in the form of a set of predicate declarations and
accompanying constraints. Rules are specified to compute the
required results. Result queries may also be prepared for later
presentation via output files or direct display to users.

III. FEEDBACK
Given the above description of Datalog and Datalog

programming, questions arise as to what feedback a
development environment can give to the programmer and
when to give it. For example, what effect does the transactional
nature of Datalog execution have on information delivery? If
the program intends a group of changes to be effected by a
single transaction, then providing feedback with small temporal
latency may not be of much use to the programmer because of
its large intentional distance. Table I. illustrates some of the
kinds of feedback that might be provided by a live logic
programming environment, when it would be appropriate to
provide them and what actions the environment might take to
help the developer deal with the situation.

IV. OBSERVATIONS
We note several differences between the kinds of feedback

provided in traditional and a logic programming languages and
how they might affect a live development environment. First,
of course, is the commit process. The nature of logic programs
is such that immediate feedback of computed results when
making one of a set of interdependent editing change might
increase intentional distance. It is only when a set of related
changes has been completed that the computed results reflect
the programmer's complete intentions.

Logic programs normally comprise a large set of small (one
to four line) rule specifications. Each rule has its own argu-
ments and local variables, thus acting more like a function than
a statement in an imperative programming language. Interest-
ing semantic errors arise due to the interdependencies among
the numerous, loosely coupled rules. Consequently, seeing the-
se dependencies is quite helpful to understanding where a prob-
lem might arise. Dependency visualizations can be either static
or dynamic. An example of a static dependency between two
rules is when an IDB predicate computed in the head of one
rule is dependent on one or more predicates in its body. The
body predicates may, in turn, be dependent on predicates in its
body. The body predicates may, in turn, be dependent on predi-
cates computed in other rules until, eventually, EDB predicates

TABLE I. FEEDBACK TO LOGIC PROGRAMMERS

Activity Situation Action

Rule specification Use of undeclared
predicate

Generate declaration

Rule specification Wrong number /
type of arguments

Highlight matching predicate
declarations; (semi) automatic
correction

Rule specification Duplicate rule
head

Highlight matching rules

Rule specification Unsafe rule Highlight matching rules

Rule specification Missing base case
for recursive rule

Highlight matching rules

Predicate / rule
declaration
selection

Program reading
Highlight referenced and/or
dependent predicate
declarations

Entity declaration Missing reference
scheme

Generate default reference
scheme

Property predicate
declaration

Missing entity
reference

Offer choices

Predicate /
constraint
declaration

Unknown
predicate reference

Offer choices

Constraint
specification

Wrong number /
type of arguments

Highlight matching predicate
declarations; (semi) automatic
correction

EDB fact assertion Undeclared
predicate

Offer choices; generate
predicate declaration

EDB fact assertion Wrong number /
type of arguments

Offer choices

EDB fact assertion Constraint
violation

Display constraint and
violating values; allow
correction

EDB modification Database
maintenance

Display altered views

Query Routine use Display results

Query

Unknown
predicate; wrong
number / type of
arguments

Offer alternatives

Transaction
execution Commit Highlighted display of new

IDB facts
Transaction
submittal Delayed execution Performance improvement

suggestions
Transaction
execution Commit Display of provenance

Transaction
execution

Constraint
violation

Rollback; display of
constraint; display of
violating data

are reached. Moreover, because of recursion, the dependencies
need not be treelike and can form a general directed graph.

Dynamic dependencies are even more interesting. The
computation of a specific predicate may depend on thousands
of other computations. Because of the bottom-up, fixed-point
nature of Datalog's evaluation algorithm and its recursive rules,
the dependency graph may be cyclic. Fortunately, such cycles
can, in most cases, be stratified (broken into tiers that are
interdependent in only an acyclic way). This suggests the
possibility of visualizations that abstract a dynamic dependency
graph in a way to make it more comprehensible.

The dynamic dependency graph enables the computation of
various kinds of provenance. In general, provenance provides a
historical record of activities contributing to the ultimate state
of a database. Specifically, we can talk about where, how, why
and why not provenance for database records [2, 3]. Where
provenance tells us about the input sources of designated

20

output values. In many cases, an output value produced by a
query is ultimately copied from some input value, and where
provenance provides this connection. For example, in
debugging, where provenance enables us to focus on a
particular test case that lead to anomalous output. Note that
because Datalog has set-based semantics (in contrast with
SQL's multi-set semantics), there may be multiple input values
that might have given rise to the output value.

Why provenance provides a more extensive but less precise
description of the production of an output fact. In particular, it
comprises all sets of input facts that might have contributed to
its production. Whereas where provenance is concerned with
values, why provenance is concerned with sets of facts. An
example use of why provenance is if we wish to understand
which input fact influence an output fact in a what-if scenario.

More extensive still is how provenance, which tells us not
only which sets of input facts contribute to the production of an
output fact but also which database operations (i.e. rules) were
used in that production. Hence how provenance enables
detailed analysis of the operational steps in a computation. An
example of the use of how provenance would be to provide a
justification for a final result.

Most interesting of all is why-not provenance [4]. Here the
goal is to help the programmer determine why a given output
fact was not produced. Obviously, there may be many reasons,
and why-not provenance is produced using abductive
heuristics. Nevertheless, such suggestions can facilitate
program understanding and result justification.

V. A TRADITIONAL IDE FOR LOGIC PROGRAMMING
The benefit of a live programming environment is a

reduction of the distance from ideation to realization. Such a
distance include both time and intent aspects. Having
instantaneous response aids the former but at the potential cost

of increasing the latter. This increase takes the form of spurious
messages and outputs that do not reflect a program state whose
meaning is important to the programmer. We claim that a
useful live environment should focus on reducing the time
distance only for meaningful states. To see how to do this, we
contrast traditional and exploratory IDEs for Datalog logic
programming.

A traditional IDE for Datalog we have experimented with is
shown in Figure 1. The user interface is organized around
distinct displays that are customized to support development
according to three perspectives: data/spreadsheeting, source
code, and diagramming. Each display provides one or more
graphical components that target its given perspective plus a
number of components that are common across all of the
displays. These common components include the output
console, the schema browser, and the project selector.

The data display provides a grid that can be used for tasks
that require interaction with data. Such tasks include displaying
the contents of predicates, executing ad hoc queries, submitting
transactions and even modeling an application domain starting
from sample data. By default, the IDE opens to this display.
The Datalog code display provides a text editor that can be
used for tasks that involve the manipulation of large amounts of
code. Such tasks include creating and editing programs. The
schema display provides graphical tools that support
navigating, modeling, and editing the schema of a project or
database. The graphical schema language is ORM [5], and a
reverse-engineering tool exists to map Datalog code to ORM.

Note that when using the traditional IDE's code view a
programmer is required to explicitly switch to the spreadsheet
display in order to view the data. Although not obvious in
Figure 1, he/she is also required to explicitly press buttons in
order to install rules into the IDB or alter facts in the EDB.

Figure 1: A Traditional IDE for Datalog

21

VI. A LIVE IDE FOR LOGIC PROGRAMMING
A live IDE for logic programming needs to provide both

less and more than a traditional IDE. On the one hand, the live
IDE must avoid giving distracting responses until a
transactional unit is available for execution. In the traditional
IDE, a transaction unit was explicitly signified by the
developer. For a livelier feel, it would help to abstract over the
idea of transactions; that is, transactions might be
optimistically committed, using dependency analysis to
determine when such a unit is available and has been changed.
If this later subsequently leads to an invalid state, then the
transaction is aborted and the database rolled back.

A live interface for logic programming might also provide
extensive visualizations of static and dynamic dependency
information. Such visualizations would be continuously
updated as computations are performed. For example, you
could imagine a live environment where on the left you see
your logic and on the right you have panels showing predicate
data. When you edit your logic on the left, any IDB facts
instantly update on the right. In addition, you could edit data on
the right, and any other predicate panels whose values are
derived from that data could update in a live fashion.

If live updating of (derived) data is supported based on
changed logic or changed data, the visualization opportunities
increase. For example:
• If you display data in a grid, values that change could

temporarily light up in green if they went up, or red if
they went down.

• Graphed data could morph from the old graph to the new
in an animated way.

• Graphs could be edited by pulling values up and down,
thereby updating the underlying data.

VII. DISCUSSION
Brooks has famously distinguished essential and accidental

complexity in the context of program development [6]. Acci-
dental complexity arises when solving problems is complicated
by the tools used to solve them, whereas essential complexity
is inherent to the problem itself. It should be the goal of any
live programming environment to reduce accidental complexity
so that the developer can concentrate on essential issues. One
way to do so is to make as direct a connection as possible be-
tween a proposed solution expressed in code and the results
produced by its execution. Directness is enhanced by reducing
the temporally and intentional distance between the two.

Of course, all is not smooth sailing. As indicated above, the
inherent role of transactions in logic programming
compromises the direct connection between program edits and
changes to results. Because optimistic commits are inherently
heuristic in nature and may have to be rolled back, the
programmer will always have to cope with some latency.

Another issue has to do with scale. Databases are usually
required for situations where there is lots of data involved.
Hence, seeing the effects of a code change will require
abstracting results via advanced visualizations. Moreover, the
long chains of inferences typical of logic programs mean that
provenance will be difficult to present, whether textually of
graphically. Similarly, it may be difficult to make sense of

constraint violations because, in general, they can act as
invariants over the entire state of the database.

A final issue to be concerned with in live logic
programming is concurrency. Database systems often support
multiple users concurrently viewing and updating database
content. If a live development environment is used to update or
debug a program accessing a concurrent database, the
environment should help manage database volatility. At one
extreme, it could create a single-user snapshot of the database.
On the other, it might provide monitoring capabilities to warn
of potentially faulty situations and recording features so that
they can be reproduced.

VIII. CONCLUSION
Liveness has been part of software development tooling

since the time that debugging tools began to allow users to set
breakpoints, watch variables, and single-step execution.
Multiple, live views of programs and their data have also been
with us for at least thirty years. Nevertheless, dead
environments, in which the temporal and intentional distance
between program code and results are large, still prevail in
many areas. Fortunately, advances in hardware speed, graphical
displays and compiler architectures have enabled many of these
early visions to finally be put to practical use.

We began this paper by asking whether live programming
environments can be used with logic languages. Because such
languages are beginning to be used to develop large-scale
applications, they have become attractive candidates for live
development environments. However, we determined that
certain language features, such as transactions, have to be
considered because they affect the temporal and intentional
distances of relevance to the programmer. We can now
generalize the original question to ask what does liveliness
mean for different language paradigms? That is, how do we
design live environments tailored to specific language features?

ACKNOWLEDGMENT
The authors wish to thank their colleagues at LogicBlox

who have designed the version of Datalog and built the
platform technology described in this paper.

REFERENCES
[1] W. F. Clocksin and C. S. Mellish. Programming in Prolog:

Using the ISO Standard / 5th Edition. Springer. 2003.
[2] James Cheney, Laura Chiticariu and Wang-Chiew Tan.

"Provenance in Databases: Why, How, and Where."
Foundations and Trends in Databases, 1(4):379–474, 2007.

[3] Grigoris Karvounarakis, Zachary G. Ives, Val Tannen.
"Querying Data Provenance. SIGMOD 2010, pp. 951-962.

[4] Adriane Chapman and H. V. Jagadish. "Why-Not?" Proceedings
of the 2009 ACM SIGMOD International Conference on
Management of Data, 523-534, Providence, Rhode Island, June
29th to July 2, 2009.

[5] Terry Halpin and Tony Morgan. Information Modeling and
Relational Databases: From Conceptual Analysis to Logical
Design (2nd ed.). Morgan Kaufmann, March 2008.

[6] Frederick P. Brooks, Jr. "No Silver Bullet - Essence and
Accidents in Software Engineering." Information Processing
1986, Proceedings of the IFIP Tenth World Computing
Conference, J.-J. Kugler (ed.), 1986, pp. 1069-1076.

22

