Visual Code Annotations for Cyberphysical
Programming

Ben Swift*, Andrew Sorensent, Henry Gardner*, John Hosking*
*Resarch School of Computer Science, Australian National University, Australia
{ben.swift, henry.gardner, john.hosking} @anu.edu.au
TInstitute for Future Environments, Queensland University of Technology, Australia
a.sorensen @qut.edu.au

Abstract—User interfaces for source code editing are a crucial
component in any software development environment, and in
many editors visual annotations (overlaid on the textual source
code) are used to provide important contextual information to the
programmer. This paper focuses on the real-time programming
activity of ‘cyberphysical’ programming, and considers the type
of visual annotations which may be helpful in this programming
context.

I. INTRODUCTION

In the broadest sense, live programming is interactive pro-
gramming. Commonly this style of programming is associated
with some form of read-eval-print loop (REPL) or other top-
level interaction vehicle. Interactive programming environ-
ments support code interpretation and symbol (re)binding on-
the-fly to enable software to be substantially altered during
execution. More recently, different terms such as just-in-time
programming, livecoding, live programming and cyberphys-
ical programming have been used to extend and clarify the
specific technologies and communities which operate under
this umbrella.

e Just-in-time (JIT) programming, a term initially coined
by Richard Potter [1], is “the implementing of algorithms
during task-time, the time when the user is actually trying
to accomplish the task.” This is the broadest definition of
live programming, and enfolds all the others in this list.

e Livecoding [2] is an audiovisual performance practice
where artist-programmers develop generative audiovisual
systems live in front of an audience.

o Live Programming involves the direct construction, ma-
nipulation and visualisation of a program’s run-time state,
including internal structures. These types of environments
date back to Self [3], and perhaps the most radical
example of this is Jonathon Edwards’ SubText [4]. In
SubText, run-time program modifications are not standard
name (re)bindings (as is the case with interactive REPL-
style environments) but require the direct manipulation
of a running program’s state.

o Cyberphysical programming extends the real-time nature
of livecoding beyond audiovisual systems' to any real-
time domain, emphasising the relationship between the

Iso livecoding is a sub-domain of cyberphysical programming

programmer, the machine, and the environment. This re-
lationship is abstract in nature (i.e. procedural rather than
gestural) making the activity one of real-time procedural
orchestration. This real-time orchestration may be in the
audiovisual domain (as is the case for livecoding), or
through some other real-world interaction; controlling
a robot or modifying a sensor network. Cyberphysical
programming is about building real-time systems in real-
time, but more fundamentally is about the ‘“reacting
responsively to perturbations in the world” [5].

This paper focuses on cyberphysical programming and asks
the question what information should we give the cyber-
physical programmer about the state of the world and its
relationship to the code they are editing? In particular, we
consider how visual annotations, overlaid on the textual source
code, can assist the cyberphysical programmer. To this end, we
present some of our own ongoing work in visual source code
annotations in the Impromptu/Extempore [6] cyberphysical
programming environment.

II. VISUAL ANNOTATIONS: PROVIDING CONTEXT TO THE
PROGRAMMER

User interfaces for source code editing are a crucial com-
ponent in a software development environment [7]. In this
context, visual annotations are used to provide “relevant, yet
passive context” to the programmer [8]. Visual annotations are
a near-ubiquitous feature of both commercial and open-source
text editors and IDEs.

The visuals annotations may take many different forms.
At a very basic level, syntax colouring is the practice of
using colour to provide context to the programmer about the
syntactic and semantic characteristics of the various tokens
in the code [9]. Coloured indicators may also be placed in
the ‘margins’ of the editor [10]. Slightly more sophisticated
annotations may include graphical overlays which provide
information about code churn and test coverage [8] or provide
warnings about code smells [11].

Visual annotations may be continuous (always-on, providing
constant feedback about some aspect of the system) or discrete
(triggered by certain events or states of the world). There are
several factors which influence the attentional draw (AD) of
different visual information displays, including colour, size,
and movement. While the influence of these factors is complex

978-1-4673-6265-8/13 © 2013 IEEE 27 LIVE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

and context-dependent, in general the best balance of annoy-
ance, perceived benefit, and performance increase occurred
when the AD of the notifications matched their criticality
(importance) [12].

III. THE STATE OF THE WORLD AND STATE OF THE CODE

In any programming activity (not just cyberphysical pro-
gramming), a running program calls procedures (and sub-
procedures) which change the state of the world, mutating
variables and passing data in and out. As such, the state of
the world (SoW)—the bits in memory, the call stack, readings
from sensors and data flow to output devices—is constantly
in flux.

The state of the code (SoC), in contrast, is the structure
of the code independent of its execution. This includes basic
problems such as syntax errors, which will prevent the code
from even compiling, and also static analysis techniques for
determining unused code paths or providing code refactoring
suggestions. These analyses are independent of the SoW
(indeed the program need not even be running to perform
them) but are also important context for the programmer.

What makes cyberphysical programming different from
other programming practices is the relationship between these
states: the state of the world and the SoC. In particular, the
difficulty stems from the fact that the SoW and the SoC can
diverge. This matters in cyberphysical programming because
the code is live—executing even as it is being edited.

An example in Extempore may help to illustrate this point.
Consider a quality control robot gc-bot which monitors a
production line. We want the robot to take a sample from
the production line once per second, and if the sample is
overweight, to halt production. There are many ways to do
this, but one way is with a the ‘temporal recursion’ design
pattern [5]: an asynchronous ‘callback’ which recursively
reschedules itself:

(define gc-bot
(lambda (time)

;; take sample from the production line

(let ((sample (take-sample)))
;7 1f sample is too light, stop everything
(if (> (weigh-sample sample) 0.5)

(begin (stop-production)
(print "Overweight! Stopping.."))

;; else test again in 1 second
(callback (+ time xsecondx) ’'gc-bot)))))

;i start gc-bot’s temporal recursion
(gc—bot (now))

Notice that the last thing the gc-bot function does before
it exits is reschedule itself (through the callback function)
to be executed at a time one second into the future, creating a
temporal ‘loop’2. When the gc—bot function is evaluated (by
a key command from the programmer) the temporal recursion
is ‘kicked off’, and will continue to execute, once per second,
in perpetuity. In a cyberphysical context, this means that the
robot is actually working, taking a sample each second and
potentially stopping production if an overweight sample is
found.

Zalthough it is not a synchronous loop in the dotimes sense

28

Things get even more interesting when the gc—bot func-
tion is modified while it is temporally recursing. Stopping
the production line if just one sample is overweight is too
drastic—Ilet’s edit the code to change the robot’s behaviour to
a ‘three strikes’ policy:

(define gc-bot

(let ((strikes 0)
(lambda (time)
;; take sample from the production line
(let ((sample (take-sample)))

(if (> (weigh-sample sample) 0.5)

;; 1f 3 strikes, stop production
(if (>= strikes 3)
(begin (stop-production)
(print "3 strikes! Stopping.."))
(set! strikes (+ strikes 1)))
;; else test again in 1 second
(callback (+ time #secondx) ’‘gc-bot))))))

Until re-evaluation of the gc—-bot function is triggered by
the programmer, the old (one strike) version is still running,
and the robot is still behaving in that way. At this point, the
source code in the editor and the program being executed have
diverged, leaving the editor is in an inconsistent state.

This inconsistency is only possible in live programming
environments which require programmer intervention to trig-
ger code compilation and execution. It is not possible in
environments like SubText, where there is no notion of ‘trig-
gering’ evaluation—any manipulations of the interface take
effect automatically and immediately in the running program.
The tight coupling between code and program is bi-directional,
so that changes in the program trigger modifications to the
source code.

However, the notion of evaluation as a conscious interven-
tion by the programmer at a controlled moment in time (which
is the case in Extempore) has some benefits. Going back to
our robot example from earlier, the gc-bot checks to see
if the weight of the sample is greater than O.5. However, to
type the literal 0.5 in the usual left-to-right fashion requires
three keystrokes, and after the first keystroke only the 0
is present in the editor. If the program was automatically
updated in response to any code changes, at that brief moment
the inequality check will always return true (assuming that
weigh—sample returns a positive number). If the robot is
checking a sample at that split second, the test will fail and
the production line will grind to a halt!

It is therefore desirable in cyberphysical programming to
retain manual control over the evaluation of code so that the
code can be edited ‘through’ an incorrect state to get to a
new, more desirable one (even if it means that the SoW-
SoC divergence is unavoidable). This is a challenge unique
to cyberphysical programming—or at least any programming
activity which supports the scheduling of a function before it
is (re)defined. The programmer needs contextual information
about both the SoW and SoC to do their job properly, and this
is where graphical code annotations can help.

IV. THREE STATES OF VISUALISATION

Because of the primacy of programming (editing the source
code of a program) in cyberphysical programming, we restrict

ourselves to visual annotations which are overlaid on the code
itself (that is, in the text editor window). Harward et. al. [13]
call these type of overlays in-situ software visualisation.

A. ‘State of the World’ Annotations

SoW annotations represent tracing information about the
state of the running program. This information can be obtained
through profiling of the running code, or through callback
hooks in the program’s infrastructure which trigger on certain
events. Simply put, SoOW annotations are anything that repre-
sents information which cannot be determined by looking at
the code in isolation from the running program.

SoW annotations may provide continuous information about
variable values or may be event-based, such as a notification
that a particular piece of code has been executed or a particular
condition has been met. The annotations may provide higher-
level information than the values of individual variables, too,
for example the program’s CPU and memory usage. In an
audio generation context, knowing the volume and spectral
profile of the output audio signal may be desirable. Similarly,
in a graphics-based cyberphysical programming context, in-
formation about the frame-rate may be of use. Which values
and functions are annotated in this way depends on the
programming context, and to an extent the desires of the
programmer.

In our Impromptu heads-up display®> (HUD), the state of
variables such as sample (i.e. the clock), as well as the
memory and CPU use of the program, can be shown (textually)
at the top of the editor window as shown in figure 1. For the
cyberphysical programmer these values are fundamental to the
scheduling of temporal events, and so it is useful to have their
state visible at all times.

sample:235889 mem:132M

take sample from the production line

sample:263701 mem:131M

qc-bot <«
‘time)
take sample from the production line

Fig. 1. A clock annotation for the gc—-bot temporal recursion, which ‘spins’
at the callback rate (the two panes represent snapshots at successive points in
time). Other important state information is shown in the top right-hand corner.

All of these annotations are dynamic and update in real-
time, indeed it almost goes without saying that in cyberphys-
ical programming visual annotations must provide real-time
feedback, showing the state of the running program now. This
is more than just a latency issue, though, they can also provide
the programmer with information about the temporal patterns

3which can be seen in action at http://vimeo.com/25699729

of activation in the code—not just what is getting executed and
with what argument values, but when code is being executed.

This is particularly pertinent to the Impromptu/Extempore
programmer, who may have multiple temporal recursion
loops running simultaneously. In the Impromptu HUD, small
‘clocks’ are used to indicate the timing of each temporal re-
cursion loop (see figure 1). These clocks support both constant
and variable callback rates, and provide visual cues about
when each piece of code is being executed. Interacting with the
world often involves the precise temporal scheduling of events,
and so this temporal dimension of a program’s execution
is particularly important information for the cyberphysical
programmer.

B. ‘State of the Code’ Annotations

Static analysis techniques (of which there are many) could
be of great potential benefit to the cyberphysical programmer,
mainly due to the “danger of running very complicated new
code live” [2]. If syntax errors and infinite loops* can be caught
before the code goes live (which is what static analysis is all
about) then unfortunate crashes can be avoided.

The most basic SoC annotation is syntax colouring, which
is near ubiquitous in modern (and even not so modern) source
code editors (including Impromptu/Extempore). Techniques
such as using specific colours for numeric literals can be help-
ful when the programmer is scanning the code for interesting
values to change.

There are some static analyses which are specific to a
temporal-recursion-based program. For example the callback
clocks described in the previous section require the detection
of these patterns in the code, and in many cases the callback
rates of these loops can be determined statically. To continue
the gc-bot example from earlier, say the head of the factory
wanted to use multiple quality control robots on the production
line, each with a different sampling rate. They cyberphysical
programmer could, while the existing gc-bot code was
running, edit the function to add bot and rate arguments.
Then, new loops could be triggered with the appropriate argu-
ments, resulting in multiple temporal recursion loops running
simultaneously. Information about their scheduling could be
provided to the programmer through a scrolling ‘piano roll’
based overlay as shown in figure 2.

This annotation may change as the code changes, but
can still provide helpful context to the programmer for co-
ordinating multiple temporal recursion loops in cyberphysical
programming.

C. ‘SoC-SoW Relationship’ Annotations

The relationship between the SoW and the SoC is an area
of rich potential for visual annotations. At a very basic level,
indicators (e.g. as coloured bars in the margins) could be
used to differentiate between code which is running as written
and code which has been modified since the last evaluation
(and therefore represents a SOW-SoC divergence). This is not

4Obviously fixing this issue in the most general case involves solving the
halting problem, but heuristics can provide protection in specific situations.

29

sample:529485 mem:164M

qgc-bot
time bot rate

;5 from the production line

Fig. 2. A piano roll overlay for multiple temporal recursions. There are two
separate gc-botrecursions going on here (indicated with different colours),
each with a different rate argument. As time goes on, the ‘events’ scroll to
the left until they hit the ‘execution line’ and are triggered.

dissimilar from the feedback which some editors (e.g. Visual
Studio) use to indicate which lines of code have been modified
since the last save.

However, it is not only important to know whether the code
has diverged from the world, but whether or not the updated
code still ‘fits’ in the contexts where it is already in use.
For example, consider an extension to the Impromptu HUD
which uses the colour of the spinning clock to indicate whether
the modified code (which is involved in a currently running
temporal recursion loop) still fits in the running program. This
may involve an arity check, or in strongly-typed languages
(such as Extempore) a type check.

More useful in a cyberphysical context, though, is a tem-
poral check—an analysis of the temporal appropriateness of
a given piece of code (as suggested in [5]). The system
could perform analysis of both the running program state
to determine overall system load, and also (using heuristics)
calculate the approximate cost (in CPU cycles and memory) of
the updated code. In high-level languages calculating an upper
bound on the execution time of a piece of code is difficult,
however in lower-level environments like Extempore, which
uses the LLVM compiler infrastructure [14], more accurate
estimates (and even guarantees [15]) may be possible.

Visual annotations can then be presented to the programmer
regarding how much load the new code will place on the
system, and whether this load is manageable. These annota-
tions are much more complex than simple syntax colouring
and memory readouts, but they are potentially of much more
use to the cyberphysical programmer because they assist in
synthesising knowledge about the SoW and the SoC—one of
the key challenges in cyberphysical programming.

One final point worth making is that the annotations them-
selves may be live programmed, or at least live-modifiable.
A fundamental tenet of live programming is that there are
desirable behaviours which cannot be forseen, and offering
the programmer the chance to change the annotations they are
presented seems wholly consistent with this idea.

V. CONCLUSION

There is much work to be done in understanding live
programming in general, including in providing visual an-
notations to assist them in their programming. In this paper

we have deliberately limited the discussion to cyberphysical
programming, the orchestration (through a textual language)
of behaviours by a programmer in time and in the world.

This paper has covered passive annotations out of a desire to
keep cyberphysical programming a programming (rather than
graphical) activity. While some of the annotations discussed in
this workshop paper have been implemented in the Impromptu
HUD, more work remains to be done both in designing and
evaluating the visual annotations presented. Still, an under-
standing of the complex relationship between the state of
the world and the state of the code is necessary to provide
maximum benefit to the cyberphysical programmer through
visual annotations.

REFERENCES

[1] R. Potter, “Just-in-time programming, Watch what I do: programming
by demonstration,” MIT Press, 1993.

[2] A. Mclean, N. Collins, and J. Rohrhuber, “Live coding in laptop
performance,” Organised Sound, vol. 8, no. 3, p. 321, Jan. 2003.

[3] D. Ungar, R. B. Smith, D. Ungar, and R. B. Smith, Self: The power of
simplicity. ACM, Dec. 1987, vol. 22.

[4] J. Edwards, “No ifs, ands, or buts: Uncovering the simplicity of
conditionals,” ACM SIGPLAN Notices, vol. 42, no. 10, pp. 639-658,
2007.

[5] A. Sorensen and H. J. Gardner, “Programming with time: cyber-physical
programming with impromptu,” OOPSLA ’10: Proceedings of the ACM
international conference on Object oriented programming systems lan-
guages and applications, 2010.

[6] A. Sorensen. Extempore.
http://extempore.moso.com.au/

[71 M. L. Van De Vanter, S. L. Graham, and R. A. Ballance, “Coherent
user interfaces for language-based editing systems,” Decision Support
Systems, vol. 37, no. 4, pp. 431-466, Oct. 1992.

[8] N. Lopez and A. van der Hoek, “The code orb,” in ICSE ’'I1.
York, New York, USA: ACM Press, 2011, p. 824.

[9]1 R. M. Baecker and A. Marcus, Human factors and typography for more

readable programs. ACM, Nov. 1989.

J. gliwerski, T. Zimmermann, and A. Zeller, “HATARI: raising risk

awareness,” in ESEC/FSE-13. ACM Request Permissions, Sep. 2005.

E. Murphy-Hill and A. P. Black, “An interactive ambient visualization

for code smells,” in SOFTVIS '10. New York, New York, USA: ACM

Press, 2010, pp. 5-14.

J. Gluck, A. Bunt, and J. McGrenere, “Matching attentional draw with

utility in interruption,” in CHI "07. New York, New York, USA: ACM

Press, 2007, pp. 41-50.

M. Harward, W. Irwin, and N. Churcher, “In Situ Software Visu-

alisation,” in Software Engineering Conference (ASWEC), 2010 21st

Australian, 2010, pp. 171-180.

C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong

program analysis & transformation,” in International Symposium on

Code Generation and Optimization, 2004. CGO 2004. 1EEE, 2004,

pp. 75-86.

F. Merz, S. Falke, and C. Sinz, “LLBMC: Bounded Model Checking

of C and C++ Programs Using a Compiler IR,” in Verified Software:

Theories. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.

146-161.

[Online]. Available:

New

(10]

[11]

[12]

(13]

[14]

[15]

30

