
Introducing Circa: A Dataflow-Based Language
for Live Coding

Andrew Fischer
Shutterfly, USA

Phoenix, AZ USA
andy.fischer@gmail.com

Abstract—In a live programming environment, the state of the
running program is available during the editing process. An ideal
live programming system should be able to harness the live
program to offer improved abilities for code creation and
manipulation. We introduce Circa, a language and platform
designed to address this need. We argue in favor of a dataflow-
based model of computation, and we show how this format
enables useful methods of code inspection and manipulation. We
present a framework based on the backpropogation algorithm
that allows the user to manipulate their program by expressing a
desire against the program’s result. We discuss how these code
editing abilities can combine to produce a highly effective
environment.

Index Terms—Live coding, dataflow programming.

I. INTRODUCTION
In a live programming environment, the user creates and

modifies code while their program is running. One of the
defining advantages of this setup is that the live program can be
used as an aid during the code editing process. We can annotate
the source code view with runtime information, such as the
most recent result for a certain expression. We can also use the
running program as a sort of magnifying glass, which shows us
which sections of the code are relevant for the current state.
This is a fundamental feature of Smalltalk-based environments
[1][2], where the user can click on a graphical object, and
navigate menus to see that object’s definition. In an ideal live
coding environment, code and runtime are intertwined, and the
user can seamlessly jump between the two. Following these
principles, we attempt to build a system from scratch that can
best support a live editing workflow.

A language’s design and implementation can often make
this kind of runtime introspection difficult. In some cases, the
association between runtime data and source code is not
preserved during the compilation process. Even if the
association is present, it may be difficult to communicate it to
the user in a clear way. For example, if we would like to ask
the system, “how was this particular value computed?” If the
program uses a series of side-effecting steps that manipulate
shared mutable state, then it can be difficult to say exactly
which steps were responsible for that value. And, even if the
language is pure, the use of too many higher-order abstractions
might cause the answer to be practically inscrutable.

To that end, we need a programming model where code is
highly introspectable and understandable. We choose a
dataflow-based programming model, where a program is
represented as a directed graph of terms. Each term has a list of
inputs, and a function that specifies how to compute the output
value. A function may be defined as a nested graph of more
terms, or it may be a simple atomic operation. A function may
also have an external effect, as long as its result value is purely
computed from its inputs.

With a dataflow model, we innately have a greater ability to
introspect on our program. For a given expression, we can
always trace upwards to see where its inputs came from. We
can show the user how a value was computed by showing the
relevant function and input values. We can also freely
reevaluate a section of code. A dataflow diagram also lends
itself well to visualization, as demonstrated by the success of
visual code editors such as PureData [3] and Max [4].

A dataflow-based code model has some drawbacks. A
major problem is of expression: it’s difficult to architect a large
program as just a series of simple pure expressions. A quote by
Alan Perlis is relevant here: “Purely applicative languages are
poorly applicable.” An area for future research is expanding on
this language to support more expressiveness, without losing
the properties that allow for deep runtime introspection.

In the remainder of this paper, we will present compelling
methods of code editing that are made possible by a dataflow
model.

II. FLOW-BASED INTROSPECTION
We present a hypothetical scenario where the user is

writing code to draw a simple scene (see figures 1 and 2). Our
goal is to enable an interaction model where the user can click
on the drawing in order to inspect and modify their code.

The process starts with a mouse click on the rendered
scene. The first thing the runtime does is to determine which
call to draw_sprite() is associated with that mouse position. We
can determine this by reexecuting the code in a special pure-
only mode, where all side-effecting functions are skipped.
During this special evaluation, the runtime observes all of the
calls to draw_sprite(), and it checks the position of each sprite
against the mouse position.

978-1-4673-6265-8/13 c© 2013 IEEE LIVE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

5

Figure 1. An example program

Figure 2. The rendered result of our example program.

The runtime now has a copy of the program’s intermediate

state at the time when the relevant draw_sprite() call was made.
We refer to this intermediate state as the "stack". It contains a
list of stack frames, each containing intermediate values and
links to the relevant code. The language’s implementation
allows stacks to be manipulated as first class values, including
support for efficient duplication.

Using the stack, and taking advantage of our flow-based
code model, we can present the user with a filtered view of the
code. This filtered view only displays terms that were directly
involved in the input values to draw_sprite(). From this view,
the user has an easier time understanding the computation that
went into this sprite’s position. (see figure 3).

III. HYBRID TEXTUAL/VISUAL EDITING
Our code examples have thus far been displayed in a textual

format, but having a highly-introspectable format allows us to
present the same code as a graphical diagram (see figure 4). We
don't consider there to be a difference between "textual"
programming languages and "visual" ones, only a difference
between textual and visual presentations. The corollary is that
some languages are strongly suited for a certain kind of
presentation. For various subjective reasons, we choose to use
text as the primary storage format for Circa code.

After looking at the filtered code view, the user will likely
want to make a code change directly to this view. This is
possible because our stack contains links to the compiled
source code data. The implementation stores code in a format

Figure 3. Code view is filtered around one call to draw_sprite()

Figure 4. A visual graph can be rendered from the above code.

that allows for easy implementation. Additionally, we
implemented a whitespace-preserving decompiler which is able
to reproduce the source text for a given code block. The user
can save a modified code block back to well-formatted source
code text.

IV. FEEDBACK ON FLOW-BASED CODE
The highly-introspectable flow-based model allows us to

perform some even more clever methods of code manipulation.
In the "feedback" scheme, the user expresses a desire against
the result of a computation. A desire might be, "I want this
result to be 5", or "I just want this result to be slightly smaller".
The solver also receives various constraints, such as a
restriction that only certain terms may be affected. Additionally
the solver may receive hints, including the program's stack at
the time when the desire was created. Taking all this input, the
solver attempts to produce a code modification that would
satisfy the requirements. The solver may answer that there are
multiple solutions, and further specification is needed. The
solver may also fail to find any solution.

This solving algorithm is inspired by the backpropagation
algorithm [5]. An initial desire is expressed against the result of
a computation. Then, we perform these two steps for each term
involved in the computation:

1) Accumulation. All the pending desires for a given term are

summed together.
2) Propagation/Resolution. We find an appropriate handler

function, using multiple dispatch against the function and

6

the desire type. The handler examines the incoming desire.
It may propagate, by sending a desire signal to one or
more of the term's inputs. It may also resolve, creating a
proposed code modification that would satisfy the
incoming desire.

This process is repeated until all pending desires are resolved,
or the algorithm fails.

Any step of the process has the potential to fail. The
accumulation step may find it impossible to sum certain
desires. The propagation/resolution step may not know how to
respond to an incoming desire. Additionally, the entire process
may produce a bad solution, even if each term was resolved
successfully. Our solver is a general-purpose optimization
algorithm, which is guaranteed to fail against some problems.
We'll discuss the ramifications of this below.

Here are some examples of a “desire” signal. The system
can be extended to support many desire types.

 RelativeValue: The result should be a value that is X

greater than before.
 NotBool: The boolean result should be the opposite of

what it was before.
 DiscourageEffect: This desire is aimed at a side-effecting

call, and indicates that the circumstances that lead to this effect
should be avoided.

The accumulation step must combine incoming desires into

one signal. If there are two or more, we must combine them in
a way that's appropriate to the desire type. For example, if we
have two RelativeValue desires, then combining them is to just
perform an arithmetic sum of their values. Some combinations
are impossible, such as RelativeValue with DiscourageEffect,
and these would cause the solver to report failure.

Once the incoming desires are combined, a handler must
use the summed desire. The handler is determined by
dispatching against the desire type and the function. For some
functions, the handler is straightforward. Consider the value()
function, which is used in Circa to hold a literal value. The
feedback handler for this function is relatively easy:

If the desire is an RelativeValue or NotBool,

produce a code modification that would change this
value to the requested value.

For other desires, report failure.

The value() function never propagates a desire, as it has no

inputs. Next, consider the add() function, which adds two
numbers. The feedback handler for add() is:

If the desire is RelativeValue, check the constraints

to see which inputs can receive feedback. If only one
input can, then propagate an equal desire of
RelativeValue to that input. If both inputs are able to
receive feedback, then the situation is ambiguous. We
can try to split the difference and send RelativeValue
feedback to both inputs. If neither input can receive

feedback, or there is a different desire type, report
failure.

Some desire types are resolved independent of the actual

function. For the DiscourageEffect desire, the strategy would
be: locate the if-block that contains this term, and propagate a
desire of NotBool against the conditional value for that if-
block.

Finally, some functions may have a strategy that is
independent of the desire type. Consider the cond() function
which takes an boolean input, and returns one value if the
boolean is true, and another if the value is false. This function's
feedback handler would look at the value of the boolean at the
time of the feedback signal. If this value is known, then the
feedback handler can propagate the desire signal towards the
input that was used at the time.

As mentioned in the add() example, there is often more than
one way for the solver to satisfy a desire. Because of this, it's
usually necessary to provide constraints to the solver. Most
often, the solver needs to be constrained to only allow
modifications to certain terms. The user can specify which
terms to target using the code view interface. Alternatively, the
source code itself might contain implicit or explicit hints,
indicating that certain terms should or should not be targeted
with feedback.

V. HANDLING FEEDBACK FAILURES
We have mentioned several ways in which our solver might

fail, or not know what to do. This is not surprising, as our
solver resembles a general-purpose equation solver, which is
hard to do well and impossible to solve completely. With its
numerous flaws, one might wonder how this system can be
useful at all.

One observation is that the problems that the feedback
solver will face tend to be relatively simple, mathematically
speaking. Consider the code behind a typical real-world
graphical user interface. When the program computes the
position of each element, the actual math is most likely nothing
more than a series of addition, multiplication and conditional
operations. Our feedback-based solver has a good chance of
success against this.

If the feedback solver does fail, we can try to recover. Our
environment is innately live and has a high degree of user
interaction. We can return to the user, present an annotated
code view showing the solver’s progress, and request more
clarification or hints.

We might also be able to help the solver by statically
annotating the code with hints. For example, our language
could include a way to declare that B is monotonically
increasing based on A. If the solver can't understand exactly
how to convert a desire based on B to one based on A, it might
be able to proceed using the hint. This issue could be
considered a matter of coding style. Experienced users could
develop a set of best practices for writing code that is amenable
to feedback.

7

VI. FEEDBACK IN ACTION
With this feedback-based solver in place, there are a few

ways that we can exploit it. Returning to our above example,
where our user is drawing a scene and they want to manipulate
the code for a given sprite. As before, the process starts with
the user clicking a sprite. The runtime would present the
relevant code path. Next, the user manually selects which
terms they want to manipulate. The feedback solver uses this
selection as a constraint. Now, the user may click and drag the
sprite. Internally, the runtime initiates a feedback operation for
every mouse drag motion. It sends a RelativeValue desire
(containing the distance of the mouse motion) against the
position input to draw_sprite(). If successful, the sprite will
move around the screen, exactly as the user would expect for a
drag gesture. In this way, we have a form of programming by
direct manipulation [6].

Figure 5. Click-and-drag using feedback to modify a selected term.

By introducing new syntax, we can further streamline the
feedback-based editing process. Consider a situation where the
user is writing new code, and they would like to tweak a certain
value once their code is running. The user can indicate that a
value is uncertain with syntax such as a “?” symbol. When the
new code is submitted, the system will present the user with a
feedback-based editing mode. The feedback operation is
automatically constrained to only manipulate the expressions
marked with “?”. Coding can then be a hybrid process, where
the initial structure of the code is written in as text, and then the
“blanks” are filled in using the interactive environment.

VII. APPLICATIONS TO OTHER DOMAINS
The strategies that we have described are fairly generic, and

would work in a variety of other domains, including non-live
environments. A dataflow-based approach works especially
well when the input and output values are easy for the user to

understand and interact with. Our drawing example is a good
fit for this approach, because directly manipulating the “output
value” (the rendered scene) is an intuitive form of interaction.
An example of a poor choice for this approach is a compression
algorithm, where the output value (compressed data) is not easy
to work with. However, even with the compression example,
there is potential to decompose the algorithm’s intermediate
steps into a form that is amenable to introspection.

VIII. CONCLUSION
Live programming has unique needs for language and

runtime. By using a dataflow-based programming model, the
system is able to more easily introspect on a running program.
This introspection enables compelling new methods of code
editing. We have shown how a runtime can show a trace view,
displaying only the expressions relevant to one particular piece
of data. We have presented a code manipulation strategy based
on the backpropagation algorithm, where code is modified by
expressing a desire against a computation result, and shown
how it may be practically utilized.

Our plans for future work are to continue to refine these
ideas for code manipulation, and continue exploring new ideas.
One major focus for future work is expanding our language to
support more powerful abstractions, without losing our code
manipulation abilities. The backpropagation-based solver has
demonstrated potential, but still has some unresolved issues
before it can be used as a dependable tool. We will also
continue improving the implementation, with the aim of
releasing a complete environment for live programming.

ACKNOWLEDGMENT
Thanks to Jennifer Seiler and Eric Daza for providing

feedback and reviewing drafts of this paper. The tree artwork
was created by TapSkill and all derived images are shared
under the Creative Commons CC-BY-SA 3 license.

REFERENCES
[1] Goldberg, Adele; Robson, David (May 1983). Smalltalk-80: The

Language and its Implementation.
[2] F. Olivero, M. Lanza, and M. Lungu. Gaucho: From Integrated

Development Environments to Direct Manipulation
Environments. FlexiTools Workshop, May 2010

[3] Puckette, M. S. (1997). Pure data. In: Proceedings of the
International Computer Music Conference, pp. 224–227.
International Computer Music Association.

[4] Danks, M. (1996). The graphics environment for max. In:
Proceedings of the International Computer Music Conference,
pp. 67–70. International Computer Music Association.

[5] Arthur Earl Bryson, Yu-Chi Ho (1969). Applied optimal control:
optimization, estimation, and control. Blaisdell Publishing
Company or Xerox College Publishing. pp. 481.

[6] Schneiderman, B. Direct Manipulation: A Step Beyond
Programming Languages, IEEE Computer, Vol. 16, No. 8, pp.
57-69, 1983.

8

